The Dirichlet Form of a Gradient-type Drift Transformation of a Symmetric Diffusion

被引:0
作者
P.J.FITZSIMMONS
机构
[1] DepartmentofMathematics,UniversityofCalifornia,SanDiego,GilmanDrive,LaJolla,CA-,USA
关键词
diffusion; Dirichlet form; Girsanov theorem; drift perturbation; Markovian extension; uniqueness;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
<正> In the context of a symmetric diffusion process X,we give a precise description of theDirichlet form of the process obtained by subjecting X to a drift transformation of gradient type.Thisdescription relies on boundary-type conditions restricting an associated reflecting Dirichlet form.
引用
收藏
页码:5+1058 / 1066 +1058-1066
页数:10
相关论文
共 8 条
[1]   Capacitary bounds of measures and ultracontractivity of time changed processes [J].
Fukushima, M ;
Uemura, T .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (05) :553-572
[2]   Reflected Dirichlet forms and the uniqueness of Silverstein's extension [J].
Kuwae, K .
POTENTIAL ANALYSIS, 2002, 16 (03) :221-247
[3]   Hardy's inequality for Dirichlet forms [J].
Fitzsimmons, PJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :548-560
[4]   Absolute continuity of symmetric diffusions [J].
Fitzsimmons, PJ .
ANNALS OF PROBABILITY, 1997, 25 (01) :230-258
[5]  
Girsanov-type transformations of local Dirichlet forms: an analytic approach[J] . Andreas Eberle.Osaka Journal of Mathematics . 1996 (2)
[6]   DECOMPOSITION OF DIRICHLET PROCESSES AND ITS APPLICATION [J].
LYONS, TJ ;
ZHANG, TS .
ANNALS OF PROBABILITY, 1994, 22 (01) :494-524
[7]   ON REFLECTED DIRICHLET SPACES [J].
CHEN, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 94 (02) :135-162
[8]  
Dirichlet Forms and Markov Processes .2 Fukushima,M,Oshima,Y,Takeda,M. De Gruyter . 1994