Symmetry Reductions of Two-Dimensional Variable Coefficient Burgers Equation

被引:0
作者
ZHANG Xiao-Ling
LI Biao Department of Applied Mathematics. Dalian University of Technology
机构
关键词
variable coefficient Burgers equation; symmetry reduction;
D O I
暂无
中图分类号
O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
By use of a direct method, we discuss symmletries and reductions of the two-dimensional Burgers equa-tion with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partialdifferential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.
引用
收藏
页码:861 / 866
页数:6
相关论文
共 20 条
  • [1] S. Y. Lou,H. Y. Ruan,D. F. Chen,W. Z. Chen. Journal of Physics A Mathematical and General . 1991
  • [2] E.J.Parkes. Journal of Physics A Mathematical and General . 1994
  • [3] New similarity reduction of the Boussinesq equation. Clarkson PA, Kruskal MD. Journal of Mathematics . 1989
  • [4] E. A. Zabolotskaya,and R. V. Khokhlov. Sov Phys. Acoustics . 1969
  • [5] Dromion-like structures in a (3+1)-dimensional KdV-type equation. Lou S Y. Journal of Physics F Metal Physics . 1996
  • [6] Communications in Theoretical Physics . 2002
  • [7] Applications of Lie Group to Diffetrntial Equations. P. J. Olvrr. Graduate Texts in Mathematics . 1993
  • [8] G. W. Bluman,and J. D. Cole. Journal of Mathematics and Mechanics . 1969
  • [9] P. Kuznetsov. Sov Phys. Acoustics . 1971
  • [10] Z. Y. Yan. Communications in Theoretical Physics . 2001