Nucleation behavior of amorphous Si–B–C–N ceramics derived from boron-modified polyvinylsilazane procusors was systematically investigated by transmission electron microscopy(TEM) combined with spatially-resolved electron energy-loss spectroscopy(EELS) analysis. The ceramics were pyrolyzed at1000?C followed by further annealing in N2, and SiC nano-crystallites start to emerge at 1200?C and dominate at 1500?C. Observed by high-angle annular dark-field imaging, bright and dark clusters were revealed as universal nano-structured features in ceramic matrices before and after nucleation, and the growth of cluster size saturated before reaching 5 nm at 1400?C. EELS analysis demonstrated the gradual development of bonding structures successively into SiC, graphetic BNCxand SiNphases, as well as a constant presence of unexpected oxygen in the matrices. Furthermore, EELS profiling revealed the bright SiC clusters and less bright SiN-like clusters at 1200–1400?C. Since the amorphous matrix has already phase separated into SiCN and carbon clusters, another phase separation of SiCN into SiC and SiN-like clusters might occur by annealing to accompany their nucleation and growth, albeit one crystallized and another remained in amorphous structure. Hinderance of the cluster growth and further crystallization was owing to the formation of BNCxlayers that developed between SiC and SiN-like clusters as well as from the excessive oxygen to form the stable SiO.