Three-dimensional Fusion of Spaceborne and Ground Radar Reflectivity Data Using a Neural Network–Based Approach

被引:6
作者
Leilei KOU [1 ]
Zhuihui WANG [1 ]
Fen XU [2 ]
机构
[1] Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Informat
[2] Meteorological Bureau of Jiangsu Province
关键词
TRMM PR; ground radar; 3D fusion; neural network;
D O I
暂无
中图分类号
P412.25 [雷达探测];
学科分类号
0706 ; 070601 ;
摘要
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite(TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar(GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments.In this paper, TRMM PR and GR reflectivity data are fused using a neural network(NN)–based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction;conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method;interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting–based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3 D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.
引用
收藏
页码:346 / 359
页数:14
相关论文
共 16 条
[1]   TRMM星载测雨雷达和地基雷达反射率因子数据的三维融合 [J].
寇蕾蕾 ;
楚志刚 ;
李南 ;
王振会 .
气象学报, 2016, 74 (02) :285-297
[2]   南京雷达数据的一致性分析和订正 [J].
朱艺青 ;
王振会 ;
李南 ;
徐芬 ;
韩静 ;
楚志刚 ;
张晗昀 ;
焦鹏程 .
气象学报, 2016, 74 (02) :298-308
[3]   基于贝叶斯融合方法的高分辨率地面-卫星-雷达三源降水融合试验 [J].
潘旸 ;
沈艳 ;
宇婧婧 ;
熊安元 .
气象学报, 2015, 73 (01) :177-186
[4]   星载双频测雨雷达航空校飞试验降水反演分析 [J].
吴琼 ;
杨虎 ;
商建 ;
郭杨 ;
尹红刚 ;
卢乃锰 .
气象学报, 2013, 71 (01) :159-166
[5]   TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究 [J].
傅云飞 ;
宇如聪 ;
徐幼平 ;
肖庆农 ;
刘国胜 .
气象学报, 2003, (04) :421-431+513
[6]   A Bayesian kriging approach for blending satellite and ground precipitation observations [J].
Verdin, Andrew ;
Rajagopalan, Balaji ;
Kleiber, William ;
Funk, Chris .
WATER RESOURCES RESEARCH, 2015, 51 (02) :908-921
[7]  
Improving weather radar precipitation estimates by combining two types of radars[J] . Jesper E. Nielsen,S?ren Thorndahl,Michael R. Rasmussen.Atmospheric Research . 2014
[8]  
Incorporating NASA Spaceborne Radar Data into NOAA National Mosaic QPE System for Improved Precipitation Measurement:[J] . Journal of Hydrometeorology . 2013 (4)
[9]  
Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River[J] . Zhe Li,Dawen Yang,Yang Hong.Journal of Hydrology . 2013
[10]   Investigating rainfall estimation from radar measurements using neural networks [J].
Alqudah, A. ;
Chandrasekar, V. ;
Le, M. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (03) :535-544