Vacuum states on compressible Navier-Stokes equations with general density-dependent viscosity and general pressure law

被引:0
|
作者
Mei-man SUN Chang-jiang ZHU Laboratory of Nonlinear Analysis
机构
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; density-dependent viscosity; vacuum; global existence;
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
070104 ;
摘要
In this paper,we study the one-dimensional motion of viscous gas with a general pres- sure law and a general density-dependent viscosity coefficient when the initial density connects to the vacuum state with a jump.We prove the global existence and the uniqueness of weak solutions to the compressible Navier-Stokes equations by using the line method.For this,some new a priori estimates are obtained to take care of the general viscosity coefficientμ(ρ)instead ofρ.
引用
收藏
页码:1173 / 1185
页数:13
相关论文
共 50 条