Improving multi-layer spiking neural networks by incorporating brain-inspired rules

被引:0
作者
Yi ZENG [1 ,2 ]
Tielin ZHANG [1 ]
Bo XU [1 ,2 ]
机构
[1] Institute of Automation, Chinese Academy of Sciences
[2] Center for Excellence in Brain Science and Intelligence Technology,Chinese Academy of Sciences
关键词
brain-inspired rules; spiking neural network; plasticity; classification task;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces seven brain-inspired rules that are deeply rooted in the understanding of the brain to improve multi-layer spiking neural networks(SNNs). The dynamics of neurons, synapses, and plasticity models are considered to be major characteristics of information processing in brain neural networks.Hence, incorporating these models and rules to traditional SNNs is expected to improve their efficiency. The proposed SNN model can mainly be divided into three parts: the spike generation layer, the hidden layers, and the output layer. In the spike generation layer, non-temporary signals such as static images are converted into spikes by both local and global feature-converting methods. In the hidden layers, the rules of dynamic neurons,synapses, the proportion of different kinds of neurons, and various spike timing dependent plasticity(STDP)models are incorporated. In the output layer, the function of classification for excitatory neurons and winner take all(WTA) for inhibitory neurons are realized. MNIST dataset is used to validate the classification accuracy of the proposed neural network model. Experimental results show that higher accuracy will be achieved when more brain-inspired rules(with careful selection) are integrated into the learning procedure.
引用
收藏
页码:226 / 236
页数:11
相关论文
共 50 条
  • [1] Improving multi-layer spiking neural networks by incorporating brain-inspired rules
    Zeng, Yi
    Zhang, Tielin
    Xu, Bo
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (05)
  • [2] Improving multi-layer spiking neural networks by incorporating brain-inspired rules受脑启发的学习规则对深层脉冲神经网络性能的提升
    Yi Zeng
    Tielin Zhang
    Bo Xu
    Science China Information Sciences, 2017, 60
  • [3] A Brain-Inspired Causal Reasoning Model Based on Spiking Neural Networks
    Fang, Hongjian
    Zeng, Yi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] A Scalable Hardware Architecture for Multi-Layer Spiking Neural Networks
    Ying, Zhaozhong
    Luo, Chong
    Zhu, Xiaolei
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 839 - 842
  • [5] A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning
    Wu, Xinyu
    Saxena, Vishal
    Zhu, Kehan
    Balagopal, Sakkarapani
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (11) : 1088 - 1092
  • [6] BRAIN-INSPIRED SPIKING NEURAL NETWORKS FOR WI-FI BASED HUMAN ACTIVITY RECOGNITION
    Tan, Yee Leong
    Wong, Yan Chiew
    Radzi, Syafeeza Ahmad
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2021, 7 (04): : 363 - 372
  • [7] A brain-inspired robot pain model based on a spiking neural network
    Feng, Hui
    Zeng, Yi
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [8] Stylistic Composition of Melodies Based on a Brain-Inspired Spiking Neural Network
    Liang, Qian
    Zeng, Yi
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15
  • [9] Brain-Inspired Spiking Neural Network Controller for a Neurorobotic Whisker System
    Antonietti, Alberto
    Geminiani, Alice
    Negri, Edoardo
    D'Angelo, Egidio
    Casellato, Claudia
    Pedrocchi, Alessandra
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [10] EEG Pattern Recognition using Brain-Inspired Spiking Neural Networks for Modelling Human Decision Processes
    Doborjeh, Zohreh G.
    Doborjeh, Maryam
    Kasabov, Nikola
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,