Global Well-posedness of the Stochastic Generalized Kuramoto-Sivashinsky Equation with Multiplicative Noise

被引:0
作者
Wei WU [1 ,2 ]
Shang-bin CUI [2 ]
Jin-qiao DUAN [3 ,4 ]
机构
[1] Science and Information College, Qingdao Agricultural University
[2] Department of Mathematics, Sun Yat-Sen University
[3] Department of Applied Mathematics, Illinois Institute of Technology
[4] Center for Mathematical Sciences, Huazhong University of Science and Technology
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Kuramoto-Sivashinsky equation; stochastic partial differential equations; multiplicative noise; well-posedness;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Global well-posedness of the initial-boundary value problem for the stochastic generalized KuramotoSivashinsky equation in a bounded domain D with a multiplicative noise is studied. It is shown that under suitable sufficient conditions, for any initial data u0 ∈L;(D×?), this problem has a unique global solution u in the space L;(?, C([0, T ], L;(D))) for any T > 0, and the solution map u0 →u is Lipschitz continuous.
引用
收藏
页码:566 / 584
页数:19
相关论文
共 10 条
  • [1] NONLINEAR STOCHASTIC WAVE EQUATIONS: BLOW-UP OF SECOND MOMENTS IN L 2-NORM [J] . Pao-Liu Chow.&nbsp&nbspThe Annals of Applied Probability . 2009 (6)
  • [2] Dynamics for the stochastic nonlocal Kuramoto–Sivashinsky equation [J] . Desheng Yang.&nbsp&nbspJournal of Mathematical Analysis and Applications . 2006 (1)
  • [3] Global L2-solutions of stochastic Navier-Stokes equations
    Mikulevicius, R
    Rozovskii, BL
    [J]. ANNALS OF PROBABILITY, 2005, 33 (01) : 137 - 176
  • [4] A note on stochastic Burgers' system of equations
    Twardowska, K
    Zabczyk, J
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (06) : 1641 - 1670
  • [5] On the stochastic Kuramoto–Sivashinsky equation [J] . Jinqiao Duan,Vincent J. Ervin.&nbsp&nbspNonlinear Analysis . 2001 (2)
  • [6] On the existence of a solution to stochastic Navier–Stokes equations [J] . Marek Capiński,Szymon Peszat.&nbsp&nbspNonlinear Analysis . 2001 (2)
  • [7] A Stochastic Nonlinear Schr?dinger Equation?with Multiplicative Noise [J] . A. de Bouard,A. Debussche.&nbsp&nbspCommunications in Mathematical Physics . 1999 (1)
  • [8] Existence and uniqueness results for semilinear stochastic partial differential equations
    Gyongy, I
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 73 (02) : 271 - 299
  • [9] On the Korteweg-de Vries-Kuramoto-Sivashinsky equation [J] . H. A. Biagioni,J. L. Bona,R. J. Iório,M. Scialom.&nbsp&nbspAdvances in Differential Equations . 1996 (1)
  • [10] Instability and turbulence of wavefronts in reaction-diffusion systems .2 Yoshiki Kuramoto. Prog. Theor. Phys . 1980