Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries

被引:0
|
作者
Shengxue YAN [1 ,2 ]
Shaohua LUO [1 ,2 ,3 ,4 ]
Liu YANG [1 ,2 ]
Jian FENG [1 ,2 ]
Pengwei LI [1 ,2 ]
Qing WANG [1 ,3 ]
Yahui ZHANG [1 ,2 ,3 ]
Xin LIU [1 ,2 ,3 ]
机构
[1] School of Materials Science and Engineering, Northeastern University
[2] Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao
[3] State Key Laboratory of Rolling and Automation, Northeastern University
[4] School of Resources and Materials, Northeastern University at Qinhuangdao
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池]; TQ174.1 [基础理论];
学科分类号
摘要
High-entropy oxides (HEOs) and medium-entropy oxides (MEOs) are new types of single-phase solid solution materials. MEOs have rarely been reported as positive electrode material for sodium-ion batteries (SIBs). In this study, we first proposed the concept of the application of MEOs in SIBs. P2-type 3-cation oxide NaNiMnFeO(NaNMF) and 4-cation oxide NaNiMnFe-AlO(NaNMFA) were prepared using the solid-state method, rather than the doping technology. In addition, the importance of the concept of entropy stabilization in material performance and battery cycling was demonstrated by testing 3-cation (NaNMF) and 4-cation(NaNMFA) oxides in the same system. Thus, NaNMFA can provide a reversible capacity of about125.6 m Ah·gin the voltage range of 2–4.2 V, and has enhanced cycle stability. The capacity and decay law of the MEO batteries indicate that the configurational entropy (1.28 R (NaNMFA) > 1.10 R(NaNMF)) of the cationic system, is the main factor affecting the structural and cycle stability of the electrode material. This work emphasizes that the rational design of MEOs with novel structures and different electrochemically active elements may be the strategy for exploring high-performance SIB cathode materials in next-generation energy storage devices.
引用
收藏
页码:158 / 171
页数:14
相关论文
共 50 条
  • [1] Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries
    Yan, Shengxue
    Luo, Shaohua
    Yang, Liu
    Feng, Jian
    Li, Pengwei
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (01) : 158 - 171
  • [2] Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries
    Shengxue YAN
    Shaohua LUO
    Liu YANG
    Jian FENG
    Pengwei LI
    Qing WANG
    Yahui ZHANG
    Xin LIU
    Journal of Advanced Ceramics, 2022, 11 (01) : 158 - 171
  • [3] Research progress on P2-type layered oxide cathode materials for sodium-ion batteries
    Wu, Chen
    Xu, Yuxing
    Song, Jiechen
    Hou, Ying
    Jiang, Shiyang
    He, Rui
    Wei, Aijia
    Tan, Qiangqiang
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [4] Structural Evolution in P2-type Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Liu, Zhengbo
    Liu, Jun
    CHEMNANOMAT, 2022, 8 (02)
  • [5] Research progress on P2-type layered oxide cathode materials for sodium-ion batteries
    Wu, Chen
    Xu, Yuxing
    Song, Jiechen
    Hou, Ying
    Jiang, Shiyang
    He, Rui
    Wei, Aijia
    Tan, Qiangqiang
    Chemical Engineering Journal, 1600, 500
  • [6] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [7] P2-type layered oxide cathode with honeycomb-ordered superstructure for sodium-ion batteries
    Yin, Wenyu
    Huang, Zhixiong
    Zhang, Tengfei
    Yang, Tianqi
    Ji, Houpeng
    Zhou, Yujia
    Shi, Shaojun
    Zhang, Yongqi
    ENERGY STORAGE MATERIALS, 2024, 69
  • [8] P2-Type Layered Oxide Cathode with Honeycomb-Ordered Superstructure for Sodium-Ion Batteries
    Yin, Wenyu
    Huang, Zhixiong
    Zhang, Tengfei
    Yang, Tianqi
    Ji, Houpeng
    Zhou, Yujia
    Shi, Shaojun
    Zhang, Yongqi
    SSRN, 2024,
  • [9] Entropy Tuning Stabilizing P2-Type Layered Cathodes for Sodium-Ion Batteries
    Liu, Jie
    Huang, Weiyuan
    Liu, Renbin
    Lang, Jian
    Li, Yuhao
    Liu, Tongchao
    Amine, Khalil
    Li, Hongsen
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
  • [10] Sm-doped P2-type layered oxide with spherical secondary hierarchy as cathode material for sodium-ion batteries
    Shi, Shaojun
    Jin, Panye
    Huang, Zhixiong
    Kou, Jialei
    Ji, Hongmei
    Yin, Wenyu
    Tang, Xiaoyan
    Mao, Han
    VACUUM, 2025, 237