Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO

被引:0
作者
Tingyu WANG [1 ,2 ]
Ping HUANG [1 ,3 ,4 ]
机构
[1] Center for Monsoon System Research, Institute of Atmospheric Physics,Chinese Academy of Sciences
[2] University of Chinese Academy of Sciences
[3] Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science & Technology
[4] State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences
关键词
D O I
暂无
中图分类号
TP183 [人工神经网络与计算]; P732 [海洋气象学];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 0706 ; 070601 ;
摘要
The application of deep learning is fast developing in climate prediction, in which El Ni?o–Southern Oscillation(ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs) in the equatorial Pacific by training a convolutional neural network(CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 55 条
[1]   Contrasting the Skills and Biases of Deterministic Predictions for the Two Types of El Nio [J].
Fei ZHENG ;
JinYi YU .
Advances in Atmospheric Sciences, 2017, 34 (12) :1395-1403
[2]  
AI-enhanced spatial-temporal data-mining technology: New chance for next-generation urban computing[J] Wang Fei;Yao Di;Li Yong;Sun Tao;Zhang Zhao The Innovation 2023,
[3]  
A deep learning model for forecasting global monthly mean sea surface temperature anomalies
[J] Taylor John;Feng Ming Frontiers in Climate 2022,
[4]  
Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model
[J] Feng Ming;Boschetti Fabio;Ling Fenghua;Zhang Xuebin;Hartog Jason R.;Akhtar Mahmood;Shi Li;Gardner Brint;Luo Jing Jia;Hobday Alistair J. Frontiers in Climate 2022,
[5]  
Data-driven global weather predictions at high resolutions[J] Taylor John A;Larraondo Pablo;de Supinski Bronis R The International Journal of High Performance Computing Applications 2022,
[6]  
Artificial intelligence: A powerful paradigm for scientific research[J] Xu Yongjun;Liu Xin;Cao Xin;Huang Changping;Liu Enke;Qian Sen;Liu Xingchen;Wu Yanjun;Dong Fengliang;Qiu Cheng-Wei;Qiu Junjun;Hua Keqin;Su Wentao;Wu Jian;Xu Huiyu;Han Yong;Fu Chenguang;Yin Zhigang;Liu Miao;Roepman Ronald;Dietmann Sabine;Virta Marko;Kengara Fredrick;Zhang Ze;Zhang Lifu;Zhao Taolan;Dai Ji;Yang Jialiang;Lan Liang;Luo Ming;Liu Zhaofeng;An Tao;Zhang Bin;He Xiao;Cong Shan;Liu Xiaohong;Zhang Wei;Lewis James P.;Tiedje
[7]  
Towards neural Earth system modelling by integrating artificial intelligence in Earth system science[J] Irrgang Christopher;Boers Niklas;Sonnewald Maike;Barnes Elizabeth A.;Kadow Christopher;Staneva Joanna;Saynisch Wagner Jan Nature Machine Intelligence 2021,
[8]  
Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000[J] Yang Xianke;Huang Ping The Innovation 2021,
[9]  
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather[J] Prabhat;Kashinath Karthik;Mudigonda Mayur;Kim Sol;Kapp Schwoerer Lukas;Graubner Andre;Karaismailoglu Ege;von Kleist Leo;Kurth Thorsten;Greiner Annette;Mahesh Ankur;Yang Kevin;Lewis Colby;Chen Jiayi;Lou Andrew;Chandran Sathyavat;Toms Ben;Chapman Will;Dagon Katherine;Shields Christine A.;O'Brien Travis;Wehner Michael;Collins William Geoscientific Model Development 20
[10]  
Evaluating the Performance of Climate Models Based on Wasserstein Distance[J] Vissio Gabriele;Lembo Valerio;Lucarini Valerio;Ghil Michael Geophysical Research Letters 2020,