The improved artificial bee colony algorithm for mixed additive and multiplicative random error model and the bootstrap method for its precision estimation

被引:0
|
作者
Leyang Wang [1 ,2 ]
Shuhao Han [1 ,2 ]
机构
[1] Faculty of Geomatics, East China University of Technology
[2] Key Laboratory of Mine Environmental Monitoring and Improving Around Poyang Lake, Ministry of Natural Resources
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论]; P207 [测量误差与测量平差];
学科分类号
0708 ; 070801 ; 08 ; 081104 ; 0812 ; 0816 ; 0835 ; 1405 ;
摘要
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model), we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model. The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation. The experimental results show that based on the weighted least squares criterion, the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation. The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 50 条
  • [1] The improved artificial bee colony algorithm for mixed additive and multiplicative random error model and the bootstrap method for its precision estimation
    Leyang Wang
    Shuhao Han
    Geodesy and Geodynamics, 2023, 14 (03) : 244 - 253
  • [2] The improved artificial bee colony algorithm for mixed additive and multiplicative random error model and the bootstrap method for its precision estimation
    Wang, Leyang
    Han, Shuhao
    GEODESY AND GEODYNAMICS, 2023, 14 (03) : 244 - 253
  • [3] The SUT method for precision estimation of mixed additive and multiplicative random error model
    Wang L.
    Chen T.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (11): : 2303 - 2316
  • [4] The TSCR method for precision estimation of ill-posed mixed additive and multiplicative random error model
    Wang, Leyang
    Chen, Tao
    Zou, Chuanyi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4581 - 4595
  • [5] MINQUE Method Variance Component Estimation for the Mixed Additive and Multiplicative Random Error Model
    Wang, Leyang
    Xiao, Hao
    JOURNAL OF SURVEYING ENGINEERING, 2023, 149 (04)
  • [6] Improved cat swarm optimization for parameter estimation of mixed additive and multiplicative random error model
    Leyang Wang
    Shuhao Han
    Geodesy and Geodynamics, 2023, (04) : 385 - 391
  • [7] Improved cat swarm optimization for parameter estimation of mixed additive and multiplicative random error model
    Leyang Wang
    Shuhao Han
    GeodesyandGeodynamics, 2023, 14 (04) : 385 - 391
  • [8] Improved cat swarm optimization for parameter estimation of mixed additive and multiplicative random error model
    Wang, Leyang
    Han, Shuhao
    GEODESY AND GEODYNAMICS, 2023, 14 (04) : 385 - 391
  • [9] Helmert variance component estimation for mixed additive and multiplicative random error model
    Wang, Leyang
    Xiao, Hao
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [10] An Improved Method of Artificial Bee Colony Algorithm
    Wu, Xin-jie
    Hao, Duo
    Xu, Chao
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION II, PTS 1 AND 2, 2012, 102-102 : 315 - 319