Research on PCA and KPCA Self-Fusion Based MSTAR SAR Automatic Target Recognition Algorithm

被引:0
作者
Chuang Lin [1 ]
Fei Peng [1 ]
Bing-Hui Wang [1 ]
Wei-Feng Sun [1 ]
Xiang-Jie Kong [1 ]
机构
[1] Software School, Dalian University of Technology
基金
中国国家自然科学基金;
关键词
Automatic target recognition; principal component analysis; self-fusion; synthetic aperture radar;
D O I
暂无
中图分类号
TN957.52 [数据、图像处理及录取];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 6 条
[1]   一种基于改进核主成分分析的SAR图像识别方法研究 [J].
李翊 ;
张静 ;
吴凌华 ;
杨迎化 .
海军航空工程学院学报, 2009, (03) :307-312
[2]   基于两级2DPCA的SAR目标特征提取与识别 [J].
胡利平 ;
刘宏伟 ;
吴顺君 .
电子与信息学报, 2008, (07) :1722-1726
[3]   基于PCA特征的快速SAR图像目标识别方法 [J].
王世晞 ;
贺志国 .
国防科技大学学报, 2008, (03) :136-140
[4]   一种新的SAR图像目标识别预处理方法 [J].
胡利平 ;
刘宏伟 ;
吴顺君 .
西安电子科技大学学报, 2007, (05) :733-737
[5]   基于KPCA准则的SAR目标特征提取与识别 [J].
韩萍 ;
吴仁彪 ;
王兆华 ;
王蕴红 .
电子与信息学报, 2003, (10) :1297-1301
[6]  
SAR ATR based on Support Vector Machines and Independent Component Analysis .2 Li Maokuan,Guan Jian. Proceedings of 2006 CIE INTERNATIONAL CONFERENCE ON READAR . 2006