QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm

被引:0
|
作者
Xiangjun Ji [1 ]
Weida Tong [2 ]
Baitang Ning [2 ]
Christopher E.Mason [3 ,4 ,5 ]
David P.Kreil [6 ]
Pawel P.Labaj [6 ,7 ,8 ]
Geng Chen [1 ]
Tieliu Shi [1 ,9 ]
机构
[1] The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
[2] National Center for Toxicological Research, U.S.Food and Drug Administration
[3] Department of Physiology and Biophysics, Weill Cornell Medicine
[4] Malopolska Centre of Biotechnology, Jagiellonian University
[5] APART Fellow, Austrian Academy of Science
[6] National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medi
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
RNA-Seq; transcriptome reconstruction; transcript assembly; transcript quantification;
D O I
暂无
中图分类号
Q811.4 [生物信息论];
学科分类号
0711 ; 0831 ;
摘要
RNA sequencing(RNA-seq) has greatly facilitated the exploring of transcriptome landscape for diverse organisms. However,transcriptome reconstruction is still challenging due to various limitations of current tools and sequencing technologies. Here, we introduce an efficient tool, QuaPra(Quadratic Programming combined with Apriori), for accurate transcriptome assembly and quantification. QuaPra could detect at least 26.5% more low abundance(0.1–1 FPKM) transcripts with over 2.7% increase of sensitivity and precision on simulated data compared to other currently popular tools. Moreover, around one-quarter more known transcripts were correctly assembled by QuaPra than other assemblers on real sequencing data. QuaPra is freely available at http://www.megabionet.org/QuaPra/.
引用
收藏
页码:937 / 946
页数:10
相关论文
共 50 条
  • [1] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Xiangjun Ji
    Weida Tong
    Baitang Ning
    Christopher E. Mason
    David P. Kreil
    Pawel P. Labaj
    Geng Chen
    Tieliu Shi
    Science China Life Sciences, 2019, 62 : 937 - 946
  • [2] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Xiangjun Ji
    Weida Tong
    Baitang Ning
    Christopher EMason
    David PKreil
    Pawel PLabaj
    Geng Chen
    Tieliu Shi
    Science China(Life Sciences), 2019, 62 (07) : 937 - 946
  • [3] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Ji, Xiangjun
    Tong, Weida
    Ning, Baitang
    Mason, Christopher E.
    Kreil, David P.
    Labaj, Pawel P.
    Chen, Geng
    Shi, Tieliu
    SCIENCE CHINA-LIFE SCIENCES, 2019, 62 (07) : 937 - 946
  • [4] An efficient sequential quadratic programming algorithm for nonlinear programming
    Zhu, ZB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (02) : 447 - 464
  • [5] A computationally efficient feasible sequential quadratic programming algorithm
    Lawrence, CT
    Tits, AL
    SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (04) : 1092 - 1118
  • [6] Efficient Implementation of Apriori Algorithm on HDFS using GPU
    Tiwary, Mayank
    Sahoo, Abhaya Kumar
    Misra, Rachita
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND APPLICATIONS (ICHPCA), 2014,
  • [7] Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm
    Jean Bosco Etoa Etoa
    Journal of Global Optimization, 2010, 47 : 615 - 637
  • [8] Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm
    Etoa, Jean Bosco Etoa
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (04) : 615 - 637
  • [9] Cov-trans: an efficient algorithm for discontinuous transcript assembly in coronaviruses
    Guo, Xiaoyu
    Wu, Zhenming
    Zhang, Shu
    Zhao, Jin
    BMC GENOMICS, 2024, 25 (01):
  • [10] Efficient trajectory optimization for vehicles using quadratic programming
    Gutjahr, Benjamin
    Pek, Christian
    Groell, Lutz
    Werling, Moritz
    AT-AUTOMATISIERUNGSTECHNIK, 2016, 64 (10) : 786 - 794