Coupling dynamic analysis of a liquid-filled spherical container subject to arbitrary excitation

被引:0
作者
Jing L Shimin Wang Tianshu Wang School of Aeronautics Science and Engineering Beihang University Beijing China School of Aerospace Tsinghua University Beijing China [100191 ,100084 ]
机构
关键词
Liquid-filled spherical tank · Coupling nonlinear system · Arbitrary excitation · Equivalent mechanical model · Spherical coordinates;
D O I
暂无
中图分类号
TB126 [工程流体力学];
学科分类号
080704 ;
摘要
Using spherical coordinates, the coupling nonlin- ear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O variational principle, and the viscous damping is introduced via the liquid dissipation function. The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation. Normal differential equations are obtained through the Galerkin method. An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation. The fixed and slosh masses, as well as the spring and damping constants, are determined in such a way as to satisfy the principle of equivalence. Numerical simulations illustrate the theoretical results in this paper as well.
引用
收藏
页码:1154 / 1162
页数:9
相关论文
共 7 条
[1]   微重力环境下轴对称贮腔类液刚耦合动力学 [J].
岳宝增 .
北京理工大学学报, 2007, (11) :941-944
[2]  
Dynamic response of liquid-filled rectangular tank with elastic appendages under pitching excitation[J]. 吕敬,李俊峰,王天舒.Applied Mathematics and Mechanics(English Edition). 2007(03)
[3]   矩形贮箱内液体非线性晃动动力学建模与分析 [J].
陈科 ;
李俊峰 ;
王天舒 .
力学学报, 2005, (03) :339-345
[4]   矩形贮箱类液固耦合系统的平动响应研究 [J].
尹立中 ;
刘敏 ;
王本利 ;
邹经湘 .
振动工程学报, 2000, (03) :113-117
[5]   俯仰运动圆柱贮箱中液体的非线性晃动 [J].
尹立中 ;
邹经湘 ;
王本利 .
力学学报, 2000, (03) :280-290
[6]   小Bond数条件下圆柱贮箱中液体晃动的模部分析 [J].
苟兴宇 ;
王本利 ;
马兴瑞 ;
黄怀德 ;
李铁寿 .
应用数学和力学, 1999, (09) :913-918
[7]  
Low-gravity sloshing in an axisymmetrical container excited in the axial direction .2 M.Utsumi. Journal of Applied Mechanics . 2000