On the Seidel Integral Complete Multipartite Graphs

被引:0
作者
Sheng-mei LV [1 ]
Liang WEI [2 ]
Hai-xing ZHAO [2 ]
机构
[1] Department of Mathematics,Qinghai Nationality University
[2] Department of Mathematics,Qinghai Normal University
基金
中国国家自然科学基金;
关键词
S-polynomial; S-integral; complete multipartite graphs;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
For a simple undirected graph G,denote by A(G) the(0,1)-adjacency matrix of G.Let the matrix S(G) = J-I-2A(G) be its Seidel matrix,and let S G(λ) = det(λI-S(G)) be its Seidel characteristic polynomial,where I is an identity matrix and J is a square matrix all of whose entries are equal to 1.If all eigenvalues of SG(λ) are integral,then the graph G is called S-integral.In this paper,our main goal is to investigate the eigenvalues of SG(λ) for the complete multipartite graphs G = K n 1,n 2,...,n t.A necessary and sufficient condition for the complete tripartite graphs K m,n,t and the complete multipartite graphs Km,...,m s,n,...,n t to be S-integral is given,respectively.
引用
收藏
页码:705 / 710
页数:6
相关论文
empty
未找到相关数据