Perturbations of Moore–Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces

被引:6
作者
Hai Feng MA [1 ]
Shuang SUN [1 ]
Yu Wen WANG [1 ]
Wen Jing ZHENG [2 ]
机构
[1] School of Mathematical Science,Harbin Normal University
[2] Department of Mathematics,Hulunbuir College
关键词
Banach space; Moore–Penrose metric generalized inverse; perturbation;
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
070104 ;
摘要
In this paper,the perturbations of the Moore–Penrose metric generalized inverses of linear operators in Banach spaces are described.The Moore–Penrose metric generalized inverse is homogeneous and nonlinear in general,and the proofs of our results are different from linear generalized inverses.By using the quasi-additivity of Moore–Penrose metric generalized inverse and the theorem of generalized orthogonal decomposition,we show some error estimates of perturbations for the singlevalued Moore–Penrose metric generalized inverses of bounded linear operators.Furthermore,by means of the continuity of the metric projection operator and the quasi-additivity of Moore–Penrose metric generalized inverse,an expression for Moore–Penrose metric generalized inverse is given.
引用
收藏
页码:1109 / 1124
页数:16
相关论文
共 17 条
[1]   Continuous Homogeneous Selections of Set-Valued Metric Generalized Inverses of Linear Operators in Banach Spaces [J].
Hai Feng MA ;
Henryk HUDZIK ;
Wen WANG .
Acta Mathematica Sinica, 2012, 28 (01) :45-56
[2]  
The Generalized Regular Points and Narrow Spectrum Points of Bounded Linear Operators on Hilbert Spaces[J]. Henryk HUDZIK.Acta Mathematica Sinica(English Series). 2010(12)
[3]   Banach空间中线性算子Moore-Penrose度量广义逆的扰动 [J].
孙爽 ;
王玉文 .
哈尔滨师范大学自然科学学报, 2009, (06) :1-3
[4]   齐性广义逆的定义及判据 [J].
白旭亚 ;
王玉文 ;
刘国清 ;
夏晶 .
数学学报, 2009, 52 (02) :353-360
[5]   任意Banach空间中线性算子的Moore-Penrose度量广义逆 [J].
倪仁兴 .
数学学报, 2006, (06) :1247-1252
[6]   单值度量广义逆的扰动分析 [J].
马海凤 ;
王玉文 .
哈尔滨师范大学自然科学学报, 2006, (02) :8-10
[7]  
METRIC GENERALIZED INVERSE OF LINEAR OPERATOR IN BANACH SPACE[J]. WANG HUI WANG YUWEN Department of Mathematics, Harbin Institute of Technology, Harbin 150080, China. Department of Mathematics, Harbin Normal University, Harbin 150080, China..Chinese Annals of Mathematics. 2003(04)
[8]   Banach空间中广义正交分解定理与广义正交可补子空间 [J].
王玉文 ;
王辉 .
数学学报, 2001, (06) :1045-1050
[9]  
Approximative compactness and continuity of metric projector in Banach spaces and applications[J] . ShuTao Chen,Henryk Hudzik,Wojciech Kowalewski,YuWen Wang,Marek Wis?a.Science in China Series A: Mathematics . 2008 (2)
[10]   Perturbation analysis for oblique projection generalized inverses of closed linear operators in Banach spaces [J].
Wang, Yuwen ;
Zhang, Hao .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (01) :1-11