Geometry of infinite-dimensional Teichmuller spaces

被引:0
作者
李忠
机构
[1] Beijing 100871
[2] China
[3] Department of Mathematics
[4] Peking University
基金
中国国家自然科学基金;
关键词
Riemann surfaces; Teichmuller spaces; quasiconfonnal mappings; Busemann geometry of geodesies;
D O I
暂无
中图分类号
O182 [解析几何];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to survey the new advances in the research on the metric geometry of infinne-dimenstonal Tetchmuller spaces in recent years. It contains the following problems and their solutions: the non-umqueness of geodesic segments; the relation between the uniqueness of segments and the uniqueness of extremal Bel-trarni differentials; non-convexity of spheres and non-differentiability of the Teichmuller metric; isometrically embed-ded polydisks; Busernann points and Strebel points, and their equivalence.
引用
收藏
页码:2 / 10
页数:9
相关论文
共 2 条
  • [1] Ueber extremale quasikonforme Abbildungen[J] . Richard Fehlmann.Commentarii Mathematici Helvetici . 1981 (1)
  • [2] On the geometry of Teichmüller spaces and the structure of their modular groups, Ann.Acad. Sci. Fenn. Kravetz, S. Ser. A. I. Math . 1959