Remaining useful life prognostics for aeroengine based on superstatistics and information fusion

被引:0
作者
Liu Junqiang
Zhang Malan
Zuo Hongfu
Xie Jiwei
机构
[1] College of Civil Aviation, Nanjing University of Aeronautics and Astronautics
关键词
Degradation; Information fusion; Kalman filtering; Performance; Prognostics; Remaining useful life; Superstatistics;
D O I
暂无
中图分类号
V263.6 [故障分析及排除];
学科分类号
082503 ;
摘要
Remaining useful life(RUL) prognostics is a fundamental premise to perform conditionbased maintenance(CBM) for a system subject to performance degradation. Over the past decades,research has been conducted in RUL prognostics for aeroengine. However, most of the prognostics technologies and methods simply base on single parameter, making it hard to demonstrate the specific characteristics of its degradation. To solve such problems, this paper proposes a novel approach to predict RUL by means of superstatistics and information fusion. The performance degradation evolution of the engine is modeled by fusing multiple monitoring parameters, which manifest non-stationary characteristics while degrading. With the obtained degradation curve,prognostics model can be established by state-space method, and then RUL can be estimated when the time-varying parameters of the model are predicted and updated through Kalman filtering algorithm. By this method, the non-stationary degradation of each parameter is represented, and multiple monitoring parameters are incorporated, both contributing to the final prognostics. A case study shows that this approach enables satisfactory prediction evolution and achieves a markedly better prognosis of RUL.
引用
收藏
页码:1086 / 1096
页数:11
相关论文
共 19 条
[1]   基于多源诊断信息融合的发动机气路分析 [J].
孙见忠 ;
左洪福 .
航空动力学报, 2013, (08) :1885-1896
[2]   一种改进的航空发动机剩余寿命预测方法 [J].
付旭云 ;
钟诗胜 ;
张慕楠 .
哈尔滨工业大学学报, 2013, 45 (05) :51-55
[3]  
Interlaced optimal-REQUEST and unscented Kalman filtering for attitude determination[J]. Quan Wei,Xu Liang,Zhang Huijuan,Fang Jiancheng.Chinese Journal of Aeronautics. 2013(02)
[4]   基于信息融合的航空发动机剩余寿命预测 [J].
王华伟 ;
吴海桥 .
航空动力学报, 2012, 27 (12) :2749-2755
[5]   基于自适应扩展卡尔曼滤波的载波跟踪算法 [J].
李理敏 ;
龚文斌 ;
刘会杰 ;
余金培 .
航空学报, 2012, 33 (07) :1319-1328
[6]   基于变权重最小二乘法的发动机气路故障诊断 [J].
鲁峰 ;
黄金泉 ;
孔祥天 .
航空动力学报, 2011, 26 (10) :2376-2381
[7]   异常点检测后的偏最小二乘回归模型 [J].
王艳 .
科学技术与工程, 2011, 11 (19) :4556-4558
[8]   一种基于超统计理论的非平稳时间序列异常点检测方法研究 [J].
杨越 ;
胡汉平 ;
熊伟 ;
丁帆 .
计算机科学, 2011, 38 (06) :93-95+117
[9]   一种航空发动机性能衰退预测的优化算法 [J].
张营 ;
左洪福 ;
任淑红 ;
朱磊 .
中国机械工程, 2011, 22 (09) :1009-1013
[10]   基于多元退化数据的可靠性分析方法 [J].
钟强晖 ;
张志华 ;
梁胜杰 .
系统工程理论与实践, 2011, 31 (03) :544-551