Lie Point Symmetry Analysis of the Harry-Dym Type Equation with Riemann-Liouville Fractional Derivative

被引:5
|
作者
Li-zhen WANG [1 ,2 ]
Ding-jiang WANG [3 ]
Shou-feng SHEN [3 ]
Qing HUANG [1 ,2 ]
机构
[1] Center for Nonlinear Studies, Northwest University
[2] Department of Mathematics, Northwest University
[3] Department of Applied Mathematics, Zhejiang University of Technology
关键词
Harry-Dym equation; symmetry group; optimal system; similarity reduction; group-invariant solution;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, Lie point symmetry group of the Harry-Dym type equation with Riemann-Liouville fractional derivative is constructed. Then complete subgroup classification is obtained by means of the optimal system method. Finally, corresponding group-invariant solutions with reduced fractional ordinary differential equations are presented via similarity reductions.
引用
收藏
页码:469 / 477
页数:9
相关论文
共 50 条
  • [1] Lie Point Symmetry Analysis of the Harry-Dym Type Equation with Riemann-Liouville Fractional Derivative
    Li-zhen Wang
    Ding-jiang Wang
    Shou-feng Shen
    Qing Huang
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 469 - 477
  • [2] Lie Point Symmetry Analysis of the Harry-Dym Type Equation with Riemann-Liouville Fractional Derivative
    Wang, Li-zhen
    Wang, Ding-jiang
    Shen, Shou-feng
    Huang, Qing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 469 - 477
  • [3] Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative
    Huang, Qing
    Zhdanov, Renat
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 : 110 - 118
  • [4] Lie symmetry analysis for fractional evolution equation with ζ-Riemann-Liouville derivative
    Soares, Junior C. A.
    Costa, Felix S.
    Sousa, J. Vanterler C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [5] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [6] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    The European Physical Journal E, 2007, 24 : 139 - 143
  • [7] Lie symmetry scheme to the generalized Korteweg-de Vries equation with Riemann-Liouville fractional derivative
    Liu, Jian-Gen
    Guo, Xiu-Rong
    Gui, Lin-Lin
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [8] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [9] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [10] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19