AN IMAGE MAGNIFICATION ALGORITHM USING THE GVF CONSTRAINT MODEL

被引:4
作者
Li XiaoguangLam KinManShen Lansun Signal and Information Processing LaboratoryBeijing University of Technology Beijing China Centre for Multimedia Signal ProcessingDepartment of Electronic and Information Engineering The Hong Kong Polytechnic UniversityHong KongChina [100022 ]
机构
关键词
Image magnification; Super resolution; Anisotropic diffusion; Gradient-Vector Flow;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
An image magnification method with a Gradient Vector Flow(GVF)constraint-basedanisotropic diffusion model is proposed in this letter.A Low-Resolution(LR)image is first magnifiedusing bilinear interpolation,and then an iterative image restoration method,with the use of an ani-sotropic diffusion model and a Gaussian moving-average constraint,is applied to the magnified image.The estimated GVF of a High-Resolution(HR)image can be used to remove the jagged effect and topreserve the textural structure in the image.Meanwhile,the use of the Gaussian moving-average LRmodel can provide a data fidelity constraint,which renders a magnified image closer to the ideal HRversion.Experimental results show that the proposed method can improve the quality of magnifiedimages in terms of both objective and subjective criteria.
引用
收藏
页码:568 / 571
页数:4
相关论文
共 1 条
[1]   一种基于分形码和模型约束的图像放大算法 [J].
张晓玲 ;
沈兰荪 ;
Lam KinMan .
电子学报, 2006, (03) :433-436