Copositive approximation by rational functions with prescribed numerator degree

被引:0
作者
YU Dan-sheng1 ZHOU Song-ping21 Department of Mathematics
Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
copositive approximation; rational functions; approximation rate;
D O I
暂无
中图分类号
O174.41 [逼近论];
学科分类号
070104 ;
摘要
The paper proves that,if f(x)∈Lp[-1,1 ≤ p < ∞,changes sign l times in(-1,1),-1,1] then there exists a real rational function r(x) ∈ Rn(2μ-1)l which is copositive with f(x),such that the following Jackson type estimate ‖f-r‖p≤Cδl2μω holds,where μ is a natural nuωmber ≥(3/2)+(1/p),and Cδ is a positive constant depending only on δ.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 3 条
[1]   On approximation by rational functions with prescribed numerator degree in LP spaces [J].
Yu, D. S. ;
Zhou, S. P. .
ACTA MATHEMATICA HUNGARICA, 2006, 111 (03) :221-236
[2]  
Approximation by rational functions with prescribed numerator degree in L p spaces for 1
[3]  
On Positive and Copositive Polynomial and Spline Approximation in L p[?1, 1], 0< p