Adaptive Equivalent-input-disturbance Approach to Improving Disturbance-rejection Performance

被引:0
|
作者
Ze-Wen Wang [1 ,2 ]
Jin-Hua She [1 ,2 ,3 ]
Guang-Jun Wang [1 ,2 ]
机构
[1] School of Automation, China University of Geosciences
[2] Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
[3] School of Engineering, Tokyo University of Technology
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP273 [自动控制、自动控制系统];
学科分类号
080201 ; 0835 ;
摘要
This paper presents an adaptive equivalent-input-disturbance(AEID) approach that contains a new adjustable gain to improve disturbance-rejection performance. A linear matrix inequality is derived to design the parameters of a control system. An adaptive law for the adjustable gain is presented based on the combination of the root locus method and Lyapunov stability theory to guarantee the stability of the AEID-based system. The adjustable gain is limited in an allowable range and the information for adjusting is obtained from the state of the system. Simulation results show that the method is effective and robust. A comparison with the conventional EID approach demonstrates the validity and superiority of the method.
引用
收藏
页码:701 / 712
页数:12
相关论文
共 50 条
  • [21] Disturbance Rejection in Repetitive-Control Systems Based on Equivalent-Input-Disturbance Approach
    Wu, Min
    Xu, Baogang
    Cao, Weihua
    She, Jinhua
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 940 - 945
  • [22] Disturbance Rejection and Control System Design Based on an Improved Equivalent-Input-Disturbance Approach
    Mei, Qicheng
    She, Jinhua
    Wang, Feng
    Nakanishi, Yosuke
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (03) : 2876 - 2886
  • [23] Improving Equivalent-Input-Disturbance Approach via Modifying a Disturbance-Estimation Algorithm
    Yin, Xiang
    Shi, Yuntao
    She, Jinhua
    Mei, Qicheng
    Zho, Lan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (09) : 11283 - 11293
  • [24] Disturbance Rejection and Performance Improvement for Control Systems Using a Finite-Time Equivalent-Input-Disturbance Approach
    Wang, Hantao
    She, Jinhua
    Wang, He
    Kawata, Seiichi
    Iwasaki, Makoto
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024,
  • [25] Disturbance Rejection for Systems With Uncertainties Based on Fixed-Time Equivalent-Input-Disturbance Approach
    Qun Lu
    Xiang Wu
    Jinhua She
    Fanghong Guo
    Li Yu
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (12) : 2384 - 2395
  • [26] Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach
    Ruijuan LIU
    Jinhua SHE
    Min WU
    Fenfang ZHU
    Zhuoyun NIE
    Science China(Information Sciences), 2018, 61 (07) : 200 - 211
  • [27] Disturbance Rejection Based on Equivalent-Input-Disturbance Approach Using High-Order Filter
    Mei, Qicheng
    She, Jinhua
    Liu, Zhentao
    Xiong, Yonghua
    He, Wangyong
    Li, Danyun
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2021,
  • [28] Disturbance Rejection based on Equivalent-Input-Disturbance Approach for Nonlinear Time-Delay Systems
    Gao, Fang
    Wu, Min
    She, Jinhua
    Fang, Mingxing
    Du, Youwu
    Wang, Fang
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1984 - 1989
  • [29] Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach
    Liu, Ruijuan
    She, Jinhua
    Wu, Min
    Zhu, Fenfang
    Nie, Zhuoyun
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (07)
  • [30] Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach
    Ruijuan Liu
    Jinhua She
    Min Wu
    Fenfang Zhu
    Zhuoyun Nie
    Science China Information Sciences, 2018, 61