On the Uniqueness of Heat Flow of Harmonic Maps and Hydrodynamic Flow of Nematic Liquid Crystals

被引:0
作者
Fanghua LIN Changyou WANG Courant Institute of Mathematical Sciences New York University New York NY USADepartment of Mathematics University of Kentucky Lexington KY USA [10012 ,40506 ]
机构
关键词
Hydrodynamic flow; Harmonic maps; Nematic liquid crystals; Uniqueness;
D O I
暂无
中图分类号
O35 [流体力学];
学科分类号
080103 ; 080704 ;
摘要
For any n-dimensional compact Riemannian manifold (M,g) without boundary and another compact Riemannian manifold (N,h), the authors establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0,T),W1,n). For the hydrodynamic flow (u,d) of nematic liquid crystals in dimensions n = 2 or 3, it is shown that the uniqueness holds for the class of weak solutions provided either (i) for n = 2, u ∈ Lt∞ L2x∩L2tHx1, ▽P∈ Lt4/3 Lx4/3 , and ▽d∈ L∞t Lx2∩Lt2Hx2; or (ii) for n = 3, u ∈ Lt∞ Lx2∩L2tHx1∩ C([0,T),Ln), P ∈ Ltn/2 Lxn/2 , and ▽d∈ L2tLx2 ∩ C([0,T),Ln). This answers affirmatively the uniqueness question posed by Lin-Lin-Wang. The proofs are very elementary.
引用
收藏
页码:921 / 938
页数:18
相关论文
共 13 条
[1]   Liquid Crystal Flows in Two Dimensions [J].
Lin, Fanghua ;
Lin, Junyu ;
Wang, Changyou .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) :297-336
[2]  
A remark on harmonic map flows from surfaces[J] . Changyou Wang.Differential and Integral Equations . 1999 (2)
[3]  
Uniqueness for the harmonic map flow from surfaces to general targets[J] . Alexandre Freire.Commentarii Mathematici Helvetici . 1995 (1)
[4]  
Evolution of harmonic maps with Dirichlet boundary conditions[J] . Yunmei Chen,Fang Hua Lin.Communications in Analysis and Geometry . 1993 (3)
[5]  
Blow-up and global existence for heat flows of harmonic maps[J] . Yunmei Chen,Wei-Yue Ding.Inventiones Mathematicae . 1990 (1)
[6]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[7]  
StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions[J] . Tosio Kato.Mathematische Zeitschrift . 1984 (4)
[8]  
On the evolution of harmonic mappings of Riemannian surfaces[J] . Michael Struwe.Commentarii Mathematici Helvetici . 1985 (1)
[9]   SOME CONSTITUTIVE EQUATIONS FOR LIQUID CRYSTALS [J].
LESLIE, FM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1968, 28 (04) :265-&
[10]  
Hydrostatic theory of liquid crystals[J] . J. L. Ericksen.Archive for Rational Mechanics and Analysis . 1962 (1)