A Normal Criterion Concerning Omitted Holomorphic Function

被引:0
作者
Jin Hua YANG [1 ]
Qi YANG [1 ]
Xue Cheng PANG [2 ]
机构
[1] School of Mathematical Sciences, Xinjiang Normal University
[2] Department of Mathematics, East China Normal University
关键词
Normal family; holomorphic functions; omitted functions;
D O I
暂无
中图分类号
O174.52 [整数函数论、亚纯函数论(半纯函数论)];
学科分类号
070104 ;
摘要
In this paper, we continue to discuss the normality concerning omitted holomorphic function and get the following result. Let F be a family of meromorphic functions on a domain D, k ≥ 4 be a positive integer, and let a(z) and b(z) be two holomorphic functions on D, where a(z) ≡ 0 and f’(z) = ∞ whenever a(z) = 0. If for any f∈ F, f(z)-a(z)f(z) = b(z), then F is normal on D.
引用
收藏
页码:1972 / 1978
页数:7
相关论文
共 10 条
[1]  
ON NORMAL CRITERION OF MEROMORPHIC FUNCTIONS[J]. 庞学诚.Science in China,Ser.A. 1990(05)
[2]  
PROOF OF HAYMAN'S CONJECTURE ON NORMAL FAMILIES[J]. 李先进.Science in China,Ser.A. 1985(06)
[3]  
Normal families and omitted functions II[J] . Guoming Zhang.Bulletin of the London Mathematical Society . 2009 (1)
[4]  
Normal Families of Meromorphic Functions[J] . Huang Xiaojun,Gu Yongxing.Results in Mathematics . 2007 (3)
[5]   On the derivative of meromorphic functions with multiple zeros [J].
Bergweiler, W ;
Pang, XC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) :285-292
[6]  
Normal Families of Meromorphic Functions whose Derivatives Omit a Function[J] . Xuecheng Pang,Degui Yang,Lawrence Zalcman.Computational Methods and Function Theory . 2002 (1)
[7]   Normal families of meromorphic functions with multiple zeros and poles [J].
Pang, XC ;
Zalcman, L .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 136 (1) :1-9
[8]   On the singularities of the inverse to a meromorphic function of finite order [J].
Bergweiler, Walter ;
Eremenko, Alexandre .
REVISTA MATEMATICA IBEROAMERICANA, 1995, 11 (02) :355-373
[9]  
über ein Problem von Hayman[J] . Erwin Mues.Mathematische Zeitschrift . 1979 (3)
[10]   PICARD VALUES OF MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES [J].
HAYMAN, WK .
ANNALS OF MATHEMATICS, 1959, 70 (01) :9-42