Invertibility of Bergman Toeplitz operators with harmonic polynomial symbols

被引:0
作者
Nanxing Guan [1 ]
Xianfeng Zhao [2 ]
机构
[1] School of Mathematics and Statistics, Chuxiong Normal University
[2] College of Mathematics and Statistics, Chongqing University
关键词
Bergman space; Toeplitz operator; harmonic polynomial symbol; invertibility;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let p be an analytic polynomial on the unit disk. We obtain a necessary and sufficient condition for Toeplitz operators with the symbol z + p to be invertible on the Bergman space when all coefficients of p are real numbers. Furthermore, we establish several necessary and sufficient, easy-to-check conditions for Toeplitz operators with the symbol z + p to be invertible on the Bergman space when some coefficients of p are complex numbers.
引用
收藏
页码:965 / 968+970 +970-978
页数:13
相关论文
共 14 条
[1]  
The spectrum of Bergman Toeplitz operators with some harmonic symbols[J]. ZHAO XianFeng,ZHENG DeChao.Science China(Mathematics). 2016(04)
[2]   On a sharp estimate for Hankel operators and Putnam's inequality [J].
Olsen, Jan-Fredrik ;
Reguera, Maria Carmen .
REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) :495-510
[3]  
Positivity of Toeplitz operators via Berezin transform[J] . Xianfeng Zhao,Dechao Zheng.Journal of Mathematical Analysis and Applications . 2013
[4]   Some results for Toeplitz operators on the Bergman space [J].
Gurdal, M. ;
Sohret, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :789-793
[5]   The Spectrum and Essential Spectrum of Toeplitz Operators with Harmonic Symbols [J].
Sundberg, Carl ;
Zheng, Dechao .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (01) :385-394
[6]   Berezin symbol and invertibility of operators on the functional Hilbert spaces [J].
Karaev, Mubariz T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) :181-192
[7]  
Counterexamples to two variants of the Helson-Szeg? theorem[J] . Thomas H. Wolff.Journal d’Analyse Mathématique . 2002 (1)
[8]  
A Theorem of Brown–Halmos Type for Bergman Space Toeplitz Operators[J] . Journal of Functional Analysis . 2001 (1)
[9]   TOEPLITZ AND HANKEL-OPERATORS ON BERGMAN SPACES [J].
STROETHOFF, K ;
ZHENG, DC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :773-794
[10]   COMMUTING TOEPLITZ-OPERATORS WITH HARMONIC SYMBOLS [J].
AXLER, S ;
CUCKOVIC, Z .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (01) :1-12