The Berry-Esseen bound for identically distributed random variables by Stein method

被引:0
作者
CAI Guang-hui Department of Mathematics
机构
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
Berry-Esseen bound; Stein method; exchangeable pair;
D O I
暂无
中图分类号
O211.3 [分布理论];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we obtain the Berry-Esseen bound for identically distributed random variables by Stein method. The results obtained generalize the results of Shao and Su (2006)and Stein (1986).
引用
收藏
页码:455 / 461
页数:7
相关论文
共 15 条
[1]  
STEIN'S METHOD AND EXACT BERRY–ESSEEN ASYMPTOTICS FOR FUNCTIONALS OF GAUSSIAN FIELDS[J] . Ivan Nourdin,Giovanni Peccati.The Annals of Probability . 2009 (6)
[2]   MULTIVARIATE NORMAL APPROXIMATION WITH STEIN'S METHOD OF EXCHANGEABLE PAIRS UNDER A GENERAL LINEARITY CONDITION [J].
Reinert, Gesine ;
Roellin, Adrian .
ANNALS OF PROBABILITY, 2009, 37 (06) :2150-2173
[3]   ON NORMAL APPROXIMATIONS TO U-STATISTICS [J].
Bentkus, Vidmantas ;
Jing, Bing-Yi ;
Zhou, Wang .
ANNALS OF PROBABILITY, 2009, 37 (06) :2174-2199
[4]  
Two new proofs of the Erd?s-Kac Theorem, with bound on the rate of convergence, by Stein's method for distributional approximations[J] . HARPER,ADAM J.Mathematical Proceedings of the Cambridge Philoso . 2009 (1)
[5]   A Berry-Esseen type inequality for convex bodies with an unconditional basis [J].
Bo’az Klartag .
Probability Theory and Related Fields, 2009, 145 :1-33
[6]   A new method of normal approximation [J].
Chatterjee, Sourav .
ANNALS OF PROBABILITY, 2008, 36 (04) :1584-1610
[7]   CLT-related large deviation bounds based on Stein's method [J].
Raic, Martin .
ADVANCES IN APPLIED PROBABILITY, 2007, 39 (03) :731-752
[8]   L1 bounds in normal approximation [J].
Goldstein, Larry .
ANNALS OF PROBABILITY, 2007, 35 (05) :1888-1930
[9]   Normal approximation for nonlinear statistics using a concentration inequality approach [J].
Chen, Louis H. Y. ;
Shao, Qi-Man .
BERNOULLI, 2007, 13 (02) :581-599
[10]   A central limit theorem for convex sets [J].
Klartag, B. .
INVENTIONES MATHEMATICAE, 2007, 168 (01) :91-131