ON QUADRATURE FORMULAE FOR SINGULAR INTEGRALS OF ARBITRARY ORDER

被引:0
作者
杜金元
机构
[1] Department of Mathematics
[2] Wuhan Uninersity
[3] Wuhan 430072
[4] China Department of Mathematics
[5] Hubei Institute for Nationalities
[6] Enshi 445000
关键词
Peano derivative; generalized Hermite interpolation; singular integral of arbitrary order; singular quadrature formula;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
引用
收藏
页码:9 / 27
页数:19
相关论文
共 10 条
  • [1] Peano Derivatives and Singular Integrals of Arbitrary Order
    Lu Jianke (Department of Mathematics
    [J]. WuhanUniversityJournalofNaturalSciences, 1996, (01) : 9 - 13
  • [2] The numerical evaluation of Hadamard finite-part integrals[J] . D. F. Paget. &nbspNumerische Mathematik . 1980 (4)
  • [3] The numerical evaluation of principal value integrals by finite-part integration[J] . H. R. Kutt. &nbspNumerische Mathematik . 1975 (3)
  • [4] Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals[J] . D. B. Hunter. &nbspNumerische Mathematik . 1972 (5)
  • [5] The numerical evaluation of Hadamard finte-part integrals. Paget D F. Numerical Mathematics . 1981
  • [6] Singular integrals of higher order and their applications to the solutions of singular integral equations. Lu Jianke. Sci & Tech of Wuhan University . 1977
  • [7] Peano derivatives and singular integrals of arbitrary order. Lu Jianke. Wuhan University J of Natural Sciences . 1990
  • [8] A note on Riemann boundary value problem of non-normal type. Du Jinyuan. J of Math (PRC) . 1990
  • [9] The quadrature formulas of the closed type and the transformed weight type for singular integrals of higher order. Du Jinyuan. J of Math (PRC) . 1986
  • [10] The numerical evaluation of principal value integrals by finite-part integration. Kutt H R. Numerical Mathematics . 1975