甜菜NBS-LRR家族基因的鉴定与分析

被引:4
作者
宫云鹤 [1 ,2 ]
赵春雷 [1 ,3 ]
王希 [1 ,3 ]
李彦丽 [1 ,3 ,4 ]
丁广洲 [1 ,2 ]
陈丽 [1 ,3 ]
机构
[1] 黑龙江大学现代农业与生态环境学院
[2] 黑龙江省甜菜工程技术研究中心
[3] 国家糖料改良中心
[4] 黑龙江大学黑龙江省普通高等学校甜菜遗传育种重点实验室
关键词
甜菜; NBS-LRR; 抗性基因R; 家族基因; 亚家族; 结构域; 同源基因;
D O I
10.13802/j.cnki.zwbhxb.2021.2021023
中图分类号
S566.3 [甜菜(甜萝卜)];
学科分类号
摘要
为明确甜菜中由抗性基因R编码的包含富亮氨酸重复序列(leucine-rich repeat,LRR)和核苷酸结合位点(nucleotide-binding site,NBS)的家族成员及其功能,基于甜菜基因组全长序列,利用HMMER、TBtools、Pfam、NCBI等软件和在线程序对甜菜NBS-LRR家族成员进行筛选和鉴定,采用生物信息学方法对鉴定到的成员进行亚家族分类、染色体定位、结构域分析、进化树构建、顺式元件分析和同源序列筛选。结果显示,从甜菜基因组中最终筛选鉴定到267条NBS-LRR家族基因序列,占甜菜基因组的0.614%,通过对267条基因序列进行结构域预测并进行分类,分属于N型、NL型、CNL型、TNL型和RNL型5个亚家族,分别包含110、25、128、3和1条序列。甜菜NBS-LRR家族基因大多位于2号、3号、4号和7号染色体上,根据基因簇划分原则发现有73.25%的基因以基因簇形式存在。经Clustal Omega和MEME在线程序对CNL型亚家族中具有完整卷曲螺旋(coiled-coil,CC)、NBS和LRR结构域的24条基因序列进行结构域保守性分析,共发现7个保守性较高的基序,基于CNL型亚家族128条基因序列构建的进化树显示CNL型亚家族的系统进化受CC、NBS和LRR结构域的影响较大。甜菜NBS-LRR家族基因含有大量植物激素相关顺式元件和多种胁迫响应元件,部分序列含有植物生理响应元件。甜菜NBS-LRR家族基因与菠菜和藜麦的抗病蛋白同源性较高。
引用
收藏
页码:1642 / 1653
页数:12
相关论文
共 49 条
[1]  
甜菜NBS-LRR类抗性基因序列分析及其转基因体系研究.[D].庞洪泉.浙江大学.2004, 03
[2]   Genome-Wide Identification and Evolutionary Analysis of NBS-LRR Genes From Dioscorea rotundata [J].
Zhang, Yan-Mei ;
Chen, Min ;
Sun, Ling ;
Wang, Yue ;
Yin, Jianmei ;
Liu, Jia ;
Sun, Xiao-Qin ;
Hang, Yue-Yu .
FRONTIERS IN GENETICS, 2020, 11
[3]  
Genomic Organization and Comparative Phylogenic Analysis of NBS-LRR Resistance Gene Family in Solanum pimpinellifolium and Arabidopsis thaliana ..[J].Wei Huawei;Liu Jia;Guo Qinwei;Pan Luzhao;Chai Songlin;Cheng Yuan;Ruan Meiying;Ye Qingjing;Wang Rongqing;Yao Zhuping;Zhou Guozhi;Wan Hongjian.Evolutionary bioinformatics online.2020,
[4]   NLGenomeSweeper: A Tool for Genome-Wide NBS-LRR Resistance Gene Identification [J].
Toda, Nicholas ;
Rustenholz, Camille ;
Baud, Agnes ;
Le Paslier, Marie-Christine ;
Amselem, Joelle ;
Merdinoglu, Didier ;
Faivre-Rampant, Patricia .
GENES, 2020, 11 (03)
[5]   Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders [J].
Lal, Dennis ;
May, Patrick ;
Perez-Palma, Eduardo ;
Samocha, Kaitlin E. ;
Kosmicki, Jack A. ;
Robinson, Elise B. ;
Moller, Rikke S. ;
Krause, Roland ;
Nuernberg, Peter ;
Weckhuysen, Sarah ;
De Jonghe, Peter ;
Guerrini, Renzo ;
Niestroj, Lisa M. ;
Du, Juliana ;
Marini, Carla ;
Ware, James S. ;
Kurki, Mitja ;
Gormley, Padhraig ;
Tang, Sha ;
Wu, Sitao ;
Biskup, Saskia ;
Poduri, Annapurna ;
Neubauer, Bernd A. ;
Koeleman, Bobby P. C. ;
Helbig, Katherine L. ;
Weber, Yvonne G. ;
Helbig, Ingo ;
Majithia, Amit R. ;
Palotie, Aarno ;
Daly, Mark J. .
GENOME MEDICINE, 2020, 12 (01)
[6]   Genetic diversity among cultivated beets (Beta vulgaris) assessed via population-based whole genome sequences [J].
Galewski, Paul ;
McGrath, J. Mitchell .
BMC GENOMICS, 2020, 21 (01)
[7]   Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera [J].
Goyal, Neetu ;
Bhatia, Garima ;
Sharma, Shailesh ;
Garewal, Naina ;
Upadhyay, Anuradha ;
Upadhyay, Santosh Kumar ;
Singh, Kashmir .
GENOMICS, 2020, 112 (01) :312-322
[8]   Analysis of synonymous codon usage patterns of HPRT1 gene across twelve mammalian species [J].
De Mandal, Surajit ;
Mazumder, Tarikul Huda ;
Panda, Amrita Kumari ;
Kumar, Nachimuthu Senthil ;
Jin, Fengliang .
GENOMICS, 2020, 112 (01) :304-311
[9]   Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain [J].
Wang, Junzhu ;
Chen, Tianyuan ;
Han, Meng ;
Qian, Lichao ;
Li, Jinlin ;
Wu, Ming ;
Han, Ting ;
Cao, Jidong ;
Nagalakshmi, Ugrappa ;
Rathjen, John P. ;
Hong, Yiguo ;
Liu, Yule .
PLOS PATHOGENS, 2020, 16 (04)
[10]   Genomes of the wild beets Beta patula and Beta vulgaris ssp. maritima [J].
Rodriguez del Rio, Alvaro ;
Minoche, Andre E. ;
Zwickl, Nikolaus F. ;
Friedrich, Anja ;
Liedtke, Susan ;
Schmidt, Thomas ;
Himmelbauer, Heinz ;
Dohm, Juliane C. .
PLANT JOURNAL, 2019, 99 (06) :1242-1253