Locally primitive Cayley graphs of finite simple groups

被引:0
作者
王杰
方新贵
C.E.Praeger
机构
基金
中国国家自然科学基金;
关键词
finite simple group; Cayley graph; locally primitive; quasiprimitive; semiregular;
D O I
暂无
中图分类号
O157.5 [图论]; O152 [群论];
学科分类号
070104 ;
摘要
A graph  is said to be G-locally primitive, where G is a subgroup of automorphisms of  , if the stabiliser Gα of a vertex α acts primitively on the set (α) of vertices of r adjacent to α. For a finite non-abelian simple group L and a Cayley subset S of L, suppose that L G≤Aut( L), and the Cayley graph   = Cay ( L, S) is G-locally primitive. In this paper we prove that L is a simple group of Lie type, and either the valency of is an add prine divisor of | Out( L)| , or L = PΩ8+ ( q) and   has valency 4. In either cases, it is proved that the full automorphism group of is also almost simple with the same socle L.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 5 条
[1]   On the automorphism groups of quasiprimitive almost simple graphs [J].
Fang, XG ;
Havas, G ;
Praeger, CE .
JOURNAL OF ALGEBRA, 1999, 222 (01) :271-283
[2]   On graphs admitting arc-transitive actions of almost simple groups [J].
Fang, XG ;
Praeger, CE .
JOURNAL OF ALGEBRA, 1998, 205 (01) :37-52
[3]   ON THE FULL AUTOMORPHISM GROUP OF A GRAPH [J].
GODSIL, CD .
COMBINATORICA, 1981, 1 (03) :243-256
[4]   MINIMAL DEGREE FOR A PERMUTATION REPRESENTATION OF A CLASSICAL GROUP [J].
COOPERSTEIN, BN .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 30 (03) :213-235
[5]  
Zur Theorie der Potenzreste[J] . K. Zsigmondy.Monatshefte für Mathematik und Physik . 1892 (1)