Exact Solutions to Three-Dimensional Schrodinger Equation with an Exponentially Position-Dependent Mass

被引:0
|
作者
CAI Chang-Ying
REN Zhong-Zhou
JU Guo-Xing Department of Physics
机构
关键词
Schrodinger equation; exact solutions; coordinate transformation; effective mass;
D O I
暂无
中图分类号
O413.1 [量子力学(波动力学、矩阵力学)];
学科分类号
070205 ; 0809 ;
摘要
For an exponentially position-dependent mass, we obtain the exact solutions of the three-dimensionalSchr(?)dinger equation by using coordinate transformation method for the reference problems with Coulomb potential,Kratzer potential, and spherically square potential well of infinite depth, respectively. The explicit expressions for theenergy eigenvalues and the corresponding eigenfunctions of the three systems are presented.
引用
收藏
页码:1019 / 1022
页数:4
相关论文
共 50 条
  • [21] Position-Dependent Mass Schrodinger Equation for the Morse Potential
    Ovando, G.
    Pena, J. J.
    Morales, J.
    Lopez-Bonilla, J.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792
  • [22] Remarks on the solution of the position-dependent mass Schrodinger equation
    Koc, Ramazan
    Sayin, Seda
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [23] Explicit solutions for N-dimensional Schrodinger equations with position-dependent mass
    Gonul, B.
    Kocak, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [24] Non-hypergeometric Type of Polynomials and Solutions of Schrodinger Equation with Position-Dependent Mass
    Ju Guo-Xing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (02) : 235 - 240
  • [25] Exact solution of the Schrodinger equation for the modified Kratzer's molecular potential with position-dependent mass
    Sever, Ramazan
    Tezcan, Cevdet
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2008, 17 (07): : 1327 - 1334
  • [26] Bound State Solutions of Schrodinger Equation for Generalized Morse Potential with Position-Dependent Mass
    Arda, Altug
    Sever, Ramazan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 51 - 54
  • [27] Non-hypergeometric Type of Polynomials and Solutions of Schrodinger Equation with Position-Dependent Mass
    鞠国兴
    CommunicationsinTheoreticalPhysics, 2011, 56 (08) : 235 - 240
  • [28] h-EXPANSION FOR THE SCHRODINGER EQUATION WITH A POSITION-DEPENDENT MASS
    Kulikov, D. A.
    Shapoval, V. M.
    JOURNAL OF PHYSICAL STUDIES, 2011, 15 (04):
  • [29] Generalized Harmonic Oscillator and the Schrodinger Equation with Position-Dependent Mass
    Ju Guo-Xing
    Cai Chang-Ying
    Ren Zhong-Zhou
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) : 797 - 802
  • [30] Scattering of position-dependent mass Schrodinger equation with delta potential
    Hassanabadi, Hassan
    Chung, Won Sang
    Zare, Soroush
    Alimohammadi, Motahareh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (03):