四阶超线性奇异微分方程正解存在的充分必要条件

被引:7
作者
赵增勤
机构
[1] 曲阜师范大学数学科学学院
关键词
奇异边值问题; 四阶超线性; 正解;
D O I
暂无
中图分类号
O175.8 [边值问题];
学科分类号
摘要
利用范数形式的锥拉伸与压缩不动点定理,对一类四阶奇异超线性微分方程边值问题做了研究,得到C2[0,1]正解与C3[0,1]正解存在的充分必要条件,也得到C2[0,1]正解的不可比较性等解的性质.
引用
收藏
页码:1425 / 1434
页数:10
相关论文
共 18 条
  • [1] A necessary and sufficient condition for the existence of positive solutions of fourth-order singular boundary value problems
    Hao, ZC
    Liu, LS
    Debnath, L
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 279 - 285
  • [2] 四阶奇异边值问题的正解
    韦忠礼
    [J]. 数学学报, 1999, (04) : 715 - 722
  • [3] 四阶奇异边值问题两个正解的存在性
    庞常词
    韦忠礼
    [J]. 数学学报, 2003, (02) : 403 - 410
  • [4] 二阶奇异非线性边值条件的上下解方法
    郭彦平
    葛渭高
    朱玉峻
    [J]. 数学学报, 2003, (05) : 1007 - 1016
  • [5] 超线性奇异边值问题正解存在的充分必要条件
    韦忠礼
    张志涛
    [J]. 数学学报, 2005, (01) : 25 - 34
  • [6] 一类非线性奇异微分方程正解的存在性定理
    赵增勤
    [J]. 数学物理学报, 2005, (03) : 393 - 403
  • [7] The Existence of Two Positive Solutions of Singular Boundary Value Problem of Fourth Order Differential Equations. Chang Ci PANG Zhong Li WEI(Department of Mathematics and Physics,Shandong Architectural and Civil Engineering Institute,Jinan 250014,P. R. China). Acta Mathematica . 2003
  • [8] Positive Solution of Singular Boundary Value Problems of Fourth Order Differential Equations. Wei Zhongli (Department of Tundamental Courses,Shandong Architectural and Civil Engineering Institute,Jinan 250014,P. R. China). Acta Mathematica . 1999
  • [9] An Upper and Lower Solution Approach to Singular Second Order Ordinary Differential Equations with Nonlinear Boundary Conditions. Yan Ping GUO(Department of Applied Mathematics,Beijing Institute of Technology,Beijing 100081,P. R. China) (College of Sciences,Hebei University of Science and Technology,Shijiazhuang 050018,P. R. China)Wei Gao GE(Department of Applied M. Acta Mathematica . 2003
  • [10] Positive Solutions of Boundary Value Problems for Nonlinear Differential Equations. Zhao Zengqin. Acta Mathematica . 2000