Binary Bell Polynomials,Bilinear Approach to Exact Periodic Wave Solutions of(2+l)-Dimensional Nonlinear Evolution Equations

被引:3
作者
王云虎 [1 ]
陈勇 [1 ,2 ]
机构
[1] Software Engineering institute of East China Normal University Shanghai Key Laboratory of Trustworthy Computing
[2] Nonlinear Science Center and Department of Mathematics,Ningbo University
关键词
binary Bell polynomial; Riemann theta function; periodic wave solution; asymptotic property;
D O I
暂无
中图分类号
O411.1 [数学物理方法]; O175 [微分方程、积分方程];
学科分类号
0701 ; 070104 ;
摘要
<正>In the present letter,we get the appropriate bilinear forms of(2 + l)-dimensionaI KdV equation,extended (2+1)-dimensional shallow water wave equation and(2 +1)-dimensional Sawada-Kotera equation in a quick and natural manner,namely by appling the binary Bell polynomials.Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations.And the corresponding figures of the periodic wave solutions are given.Furthermore,the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.
引用
收藏
页码:672 / 678
页数:7
相关论文
共 2 条
[1]   Symmetries and first integrals of differential equations [J].
Zhang, Jin ;
Li, Yong .
ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (02) :147-159
[2]  
A.Biswas. J.Nonl.Opt.Phys.Mat . 2003