Unsupervised learning of Dirichlet process mixture models with missing data

被引:0
|
作者
Xunan ZHANG [1 ]
Shiji SONG [1 ]
Lei ZHU [2 ]
Keyou YOU [1 ]
Cheng WU [1 ]
机构
[1] Department of Automation, Tsinghua University
[2] China Ocean Mineral Resources R&D Association
基金
中国国家自然科学基金;
关键词
Dirichlet processes; missing data; clustering; variational Bayesian; image analysis;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
This study presents a novel approach to unsupervised learning for clustering with missing data.We first extend a finite mixture model to the infinite case by considering Dirichlet process mixtures, which can automatically determine the number of mixture components or clusters. Furthermore, we view the missing features as latent variables and compute the posterior distributions using the variational Bayesian expectation maximization algorithm, which optimizes the evidence lower bound on the complete-data log marginal likelihood. We demonstrate the performance on several artificial data sets with missing values. The experimental results indicate that the proposed method outperforms some classic imputation methods. We finally present an application to seabed hydrothermal sulfide color images analysis problem.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条
  • [21] Dirichlet Process Gaussian Mixture Models:Choice of the Base Distribution
    Dilan Grür
    Carl Edward Rasmussen
    JournalofComputerScience&Technology, 2010, 25 (04) : 653 - 664
  • [22] Variable selection in clustering via Dirichlet process mixture models
    Kim, Sinae
    Tadesse, Mahlet G.
    Vannucci, Marina
    BIOMETRIKA, 2006, 93 (04) : 877 - 893
  • [23] Dirichlet process mixture models for the analysis of repeated attempt designs
    Daniels, Michael J.
    Lee, Minji
    Feng, Wei
    BIOMETRICS, 2023, 79 (04) : 3907 - 3915
  • [24] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Dilan Görür
    Carl Edward Rasmussen
    Journal of Computer Science and Technology, 2010, 25 : 653 - 664
  • [25] Infinite Dirichlet mixture models learning via expectation propagation
    Wentao Fan
    Nizar Bouguila
    Advances in Data Analysis and Classification, 2013, 7 : 465 - 489
  • [26] Infinite Dirichlet mixture models learning via expectation propagation
    Fan, Wentao
    Bouguila, Nizar
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2013, 7 (04) : 465 - 489
  • [27] Variance Matrix Priors for Dirichlet Process Mixture Models With Gaussian Kernels
    Jing, Wei
    Papathomas, Michail
    Liverani, Silvia
    INTERNATIONAL STATISTICAL REVIEW, 2024,
  • [28] Imputing Missing Data in One-Shot Devices Using Unsupervised Learning Approach
    So, Hon Yiu
    Ling, Man Ho
    Balakrishnan, Narayanaswamy
    MATHEMATICS, 2024, 12 (18)
  • [29] Partially collapsed parallel Gibbs sampler for Dirichlet process mixture models
    Yerebakan, Halid Ziya
    Dundar, Murat
    PATTERN RECOGNITION LETTERS, 2017, 90 : 22 - 27
  • [30] A Dirichlet process mixture model for clustering longitudinal gene expression data
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    Warren, Joshua L.
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3495 - 3506