Two-dimensional material-assisted remote epitaxy and van der Waals epitaxy: a review

被引:1
作者
Zhetong Liu [1 ,2 ,3 ]
Bingyao Liu [1 ,2 ,3 ]
Zhaolong Chen [2 ,4 ,5 ]
Shenyuan Yang [6 ,7 ]
Zhiqiang Liu [7 ,8 ]
Tongbo Wei [7 ,8 ]
Peng Gao [1 ,3 ,9 ]
Zhongfan Liu [2 ,4 ]
机构
[1] Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University
[2] Beijing Graphene Institute (BGI)
[3] Academy for Advanced Interdisciplinary Studies, Peking University
[4] Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University
[5] Institute for Functional Intelligent Materials, National University of Singapore
[6] State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences
[7] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
[8] Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences
[9] Collaborative Innovation Center of Quantum Matter
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学]; TB34 [功能材料];
学科分类号
070205 ; 080501 ;
摘要
Heteroepitaxy can reduce the cost and widen the application range of semiconductor film synthesis and device fabrication. However, the lattice and thermal expansion coefficient mismatches between epilayers and substrates limit the improvement of crystal quality and device performance. Two-dimensional(2D) material-assisted heteroepitaxy offers an effective solution to these challenges. The weak interaction at the interface between films and substrates facilitates the subsequent exfoliation and transfer of epilayer for the fabrication of flexible or high-power electronics. Herein, we summarize the modes of 2D material-assisted epitaxy, which can be classified into remote epitaxy, pinhole epitaxy and van der Waals epitaxy based on the interfacial interaction between the epilayers and substrates. Furthermore, we discuss in detail the improved crystal quality and functional applications, such as flexible devices, wavelength-modulated optoelectronic devices, and thermal management in high-power devices. Moreover, we highlight the challenges and prospects of 2D material-assisted epitaxy,providing roadmaps for lateral research and semiconductor production.
引用
收藏
页码:54 / 70
页数:17
相关论文
共 87 条
[1]   新型石墨烯基LED器件:从生长机理到器件特性 [J].
陈召龙 ;
高鹏 ;
刘忠范 .
物理化学学报, 2020, 36 (01) :113-126
[2]   Continuous Single-Crystalline GaN Film Grown on WS2-Glass Wafer [J].
Yin, Yue ;
Liu, Bingyao ;
Chen, Qi ;
Chen, Zhaolong ;
Ren, Fang ;
Zhang, Shuo ;
Liu, Zhetong ;
Wang, Rong ;
Liang, Meng ;
Yan, Jianchang ;
Sun, Jingyu ;
Yi, Xiaoyan ;
Wei, Tongbo ;
Wang, Junxi ;
Li, Jinmin ;
Liu, Zhongfan ;
Gao, Peng ;
Liu, Zhiqiang .
SMALL, 2022, 18 (41)
[3]   Controlling the Balance between Remote, Pinhole, and van der Waals Epitaxy of Heusler Films on Graphene/Sapphire [J].
Du, Dongxue ;
Jung, Taehwan ;
Manzo, Sebastian ;
LaDuca, Zachary ;
Zheng, Xiaoqi ;
Su, Katherine ;
Saraswat, Vivek ;
McChesney, Jessica ;
Arnold, Michael S. ;
Kawasaki, Jason Ken .
NANO LETTERS, 2022, 22 (21) :8647-8653
[4]   Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction [J].
Kim, Hyunseok ;
Lee, Sangho ;
Shin, Jiho ;
Zhu, Menglin ;
Akl, Marx ;
Lu, Kuangye ;
Han, Ne Myo ;
Baek, Yongmin ;
Chang, Celesta S. ;
Suh, Jun Min ;
Kim, Ki Seok ;
Park, Bo-In ;
Zhang, Yanming ;
Choi, Chanyeol ;
Shin, Heechang ;
Yu, He ;
Meng, Yuan ;
Kim, Seung-Il ;
Seo, Seungju ;
Lee, Kyusang ;
Kum, Hyun S. ;
Lee, Jae-Hyun ;
Ahn, Jong-Hyun ;
Bae, Sang-Hoon ;
Hwang, Jinwoo ;
Shi, Yunfeng ;
Kim, Jeehwan .
NATURE NANOTECHNOLOGY, 2022, 17 (10) :1054-+
[5]   Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors [J].
Kim, Yeongin ;
Suh, Jun Min ;
Shin, Jiho ;
Liu, Yunpeng ;
Yeon, Hanwool ;
Qiao, Kuan ;
Kum, Hyun S. ;
Kim, Chansoo ;
Lee, Han Eol ;
Choi, Chanyeol ;
Kim, Hyunseok ;
Lee, Doyoon ;
Lee, Jaeyong ;
Kang, Ji-Hoon ;
Park, Bo-In ;
Kang, Sungsu ;
Kim, Jihoon ;
Kim, Sungkyu ;
Perozek, Joshua A. ;
Wang, Kejia ;
Park, Yongmo ;
Kishen, Kumar ;
Kong, Lingping ;
Palacios, Tomas ;
Park, Jungwon ;
Park, Min-Chul ;
Kim, Hyung-Jun ;
Lee, Yun Seog ;
Lee, Kyusang ;
Bae, Sang-Hoon ;
Kong, Wei ;
Han, Jiyeon ;
Kim, Jeehwan .
SCIENCE, 2022, 377 (6608) :859-869
[6]   Pinhole-seeded lateral epitaxy and exfoliation of GaSb films on graphene-terminated surfaces [J].
Manzo, Sebastian ;
Strohbeen, Patrick J. ;
Lim, Zheng Hui ;
Saraswat, Vivek ;
Du, Dongxue ;
Xu, Shining ;
Pokharel, Nikhil ;
Mawst, Luke J. ;
Arnold, Michael S. ;
Kawasaki, Jason K. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Atomic Mechanism of Strain Alleviation and Dislocation Reduction in Highly Mismatched Remote Heteroepitaxy Using a Graphene Interlayer [J].
Liu, Bingyao ;
Chen, Qi ;
Chen, Zhaolong ;
Yang, Shenyuan ;
Shan, Jingyuan ;
Liu, Zhetong ;
Yin, Yue ;
Ren, Fang ;
Zhang, Shuo ;
Wang, Rong ;
Wu, Mei ;
Hou, Rui ;
Wei, Tongbo ;
Wang, Junxi ;
Sun, Jingyu ;
Li, Jinmin ;
Liu, Zhongfan ;
Liu, Zhiqiang ;
Gao, Peng .
NANO LETTERS, 2022, 22 (08) :3364-3371
[8]   Lattice Polarity Manipulation of Quasi-vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration [J].
Liu, Fang ;
Wang, Tao ;
Zhang, Zhihong ;
Shen, Tong ;
Rong, Xin ;
Sheng, Bowen ;
Yang, Liuyun ;
Li, Duo ;
Wei, Jiaqi ;
Sheng, Shanshan ;
Li, Xingguang ;
Chen, Zhaoying ;
Tao, Renchun ;
Yuan, Ye ;
Yang, Xuelin ;
Xu, Fujun ;
Zhang, Jingmin ;
Liu, Kaihui ;
Li, Xin-Zheng ;
Shen, Bo ;
Wang, Xinqiang .
ADVANCED MATERIALS, 2022, 34 (05)
[9]  
Graphene lattice guides thin film nitride growth.[J].Sealy Cordelia.Nano Today.2021,
[10]   Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer [J].
Ren, Fang ;
Liu, Bingyao ;
Chen, Zhaolong ;
Yin, Yue ;
Sun, Jingyu ;
Zhang, Shuo ;
Jiang, Bei ;
Liu, Bingzhi ;
Liu, Zhetong ;
Wang, Jianwei ;
Liang, Meng ;
Yuan, Guodong ;
Yan, Jianchang ;
Wei, Tongbo ;
Yi, Xiaoyan ;
Wang, Junxi ;
Zhang, Yong ;
Li, Jinmin ;
Gao, Peng ;
Liu, Zhongfan ;
Liu, Zhiqiang .
SCIENCE ADVANCES, 2021, 7 (31)