The L(3,2,1)-labeling on Bipartite Graphs

被引:0
作者
Yuan Wan-lian1
机构
关键词
channel assignment problems; L(2; 1)-labeling; L(3; bi- partite graph; tree;
D O I
10.13447/j.1674-5647.2009.01.008
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V (G) to the set of all nonnegative integers such that |f(u) - f(v)| ≥ 3 if dG(u, v) = 1, |f(u) - f(v)| ≥ 2 if dG(u,v) = 2, and |f(u) - f(v)| ≥ 1 if dG(u,v) = 3. The L(3, 2, 1)-labeling problem is to find the smallest number λ3(G) such that there ex- ists an L(3, 2, 1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T ) attains the minimum value.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 6 条
[1]  
Extremal problems on consecutive L ( 2 , 1 ) -labelling[J] . Changhong Lu,Lei Chen,Mingqing Zhai.Discrete Applied Mathematics . 2007 (10)
[2]   An extremal problem on non-full colorable graphs [J].
Lu, Changhong ;
Zhai, Mingqing .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (16) :2165-2173
[3]  
No-hole L (2,1)-colorings[J] . Peter C. Fishburn,Fred S. Roberts.Discrete Applied Mathematics . 2003 (3)
[4]  
The L(2, 1)-labeling problem on graphs .2 Chang G J,Kuo D. SIAM J Discrete Math . 1996
[5]   Math [P]. 
COLEMAN KENNETH ROSS .
美国专利 :US2013020766A1 ,2013-01-24
[6]  
A theorem about the channel assignment problem .2 D. Kral,R. Skrekovski. SIAM J. Discrete Math . 2003