Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition

被引:0
作者
Gong-bao LI
Ying-hong LI
机构
[1] HubeiKeyLaboratoryofMathematicalSciencesandSchoolofMathematicsandStatistics,CentralChinaNormalUniversity
关键词
existence; four solutions; p-Lalaplacian; without Ambrosetti-Rabinowitz condition;
D O I
暂无
中图分类号
O175.8 [边值问题];
学科分类号
070104 ;
摘要
In this paper, we study the existence of multiple solutions to the following nonlinear elliptic boundary value problem of p-Laplacian type:-pu = f(x, u), x∈,(*)u = 0, x∈ ,where 1 < p 更多 还原 AbstractFilter('ChDivSummary', 'ChDivSummaryMore', 'ChDivSummaryReset');
引用
收藏
页码:157 / 180
页数:24
相关论文
共 15 条
[1]   Multiplicity theorems for superlinear elliptic problems [J].
Papageorgiou, Nikolaos S. ;
Rocha, Eugenio M. ;
Staicu, Vasile .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) :199-230
[2]   Solutions and multiple solutions for problems with the p-Laplacian [J].
Hu, Shouchuan ;
Papageorgiou, Nikolaos S. .
MONATSHEFTE FUR MATHEMATIK, 2007, 150 (04) :309-326
[3]   Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian [J].
Zhang, ZT ;
Chen, JQ ;
Li, SJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 201 (02) :287-303
[4]   Existence and multiplicity results for Dirichlet problems with p-Laplacian [J].
Jiu, QS ;
Su, JB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) :587-601
[5]  
On a superlinear elliptic p -Laplacian equation[J] . Thomas Bartsch,Zhaoli Liu.Journal of Differential Equations . 2003 (1)
[6]  
Sign-changing and multiple solutions for the p -Laplacian[J] . Siegfried Carl,Kanishka Perera.Abstract and Applied Analysis . 2002 (12)
[7]   Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with a reaction term nonzero at zero [J].
Zhang, ZT ;
Li, XD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (02) :298-313
[8]  
Perturbation of Δu + u ( N +2)/( N ?2) =0, the Scalar Curvature Problem in R N , and Related Topics[J] . A Ambrosetti,J Garcia Azorero,I Peral.Journal of Functional Analysis . 1999 (1)
[9]  
Asymptotically linear Dirichlet problem for the p -Laplacian[J] . Gongbao Li,Huan-Song Zhou.Nonlinear Analysis . 1999 (8)
[10]   Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results [J].
Damascelli, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04) :493-516