An analytical solution to Boltzmann equation of dilute granular flow with homotopy analysis method

被引:0
作者
ZHANG Li1
2 State Key Laboratory of Hydroscience and Engineering
机构
关键词
dilute granular flow; Boltzmann equation; homotopy analysis method; Maxwell velocity distribution function;
D O I
暂无
中图分类号
TQ021 [基础理论];
学科分类号
081701 ; 081704 ;
摘要
The homotopy analysis method (HAM), as a new mathematical tool, has been employed to solve many nonlinear problems. As a fundamental equation in non-equilibrium statistical mechanics, the Boltzmann integro-differential equation (BE) describing the movement of particles is of strong nonlinearity. In this work, HAM is preliminarily applied to dilute granular flow which is relatively simple. By choosing the Maxwell velocity distribution function as the initial solution, the concrete expression of the first-order approximate solution to BE with collision term being the BGK model is given. Furthermore it is consistent with the solution using Chapman-Enskog method but does not rely on little parameters.
引用
收藏
页码:4365 / 4370
页数:6
相关论文
共 16 条
[1]  
Application of the lattice Boltzmann method to electrohydrodynamics: Deformation and instability of liquid drops in electrostatic fields[J]. HUANG WeiFeng1, LI Yong1 & LIU QiuSheng2 1 Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China;2 School of Aerospace, Tsinghua University, Beijing 100084, China.Chinese Science Bulletin. 2007(24)
[2]  
Application of lattice Boltzmann scheme to nanofluids[J]. XUAN Yimin,LI Qiang & YAO Zhengping School of Power Engineering,Nanjing University of Science & Technology,Nanjing 210094,China Correspondence should be addressed to Xuan Yimin.Science in China(Series E:Technological Sciences). 2004(02)
[3]  
Macro-scale pseudo-particle modeling for particle-fluid systems[J]. GE Wei & LI JinghaiMulti-phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China.Chinese Science Bulletin. 2001(18)
[4]   Boltzmann方程的精确解 [J].
沈惠川 .
应用数学和力学, 1987, (05) :419-431
[5]   Boltzmann方程的理论和应用 [J].
黄祖洽 ;
丁鄂江 .
物理学进展, 1986, (03) :300-352
[6]   Boltzmann方程的奇异扰动解法(Ⅳ)——向非Maxwell分子的推广 [J].
丁鄂江 ;
黄祖洽 .
物理学报, 1985, (02) :225-234
[7]   Boltzmann方程的奇异扰动解法(Ⅲ)——边界层解 [J].
丁鄂江 ;
黄祖洽 .
物理学报, 1985, (02) :213-224
[8]   Boltzmann方程的奇异扰动解法(Ⅱ)——初始层解 [J].
丁鄂江 ;
黄祖洽 .
物理学报, 1985, (01) :77-87
[9]   Boltzmann方程的奇异扰动解法(Ⅰ)——正规解 [J].
丁鄂江 ;
黄祖洽 .
物理学报, 1985, (01) :65-76
[10]   具有小Knudsen数的Boltzmann方程的奇异扰动解法 [J].
丁鄂江 ;
黄祖洽 .
物理学报, 1984, (05) :722-728