Simulation and control scheme of microstructure in magnetic fluids

被引:0
|
作者
LI Qiang
机构
基金
中国国家自然科学基金;
关键词
magnetic fluid; molecular dynamics simulation; microstructure; chained-alignment;
D O I
暂无
中图分类号
O361.3 [磁流体力学];
学科分类号
080103 ;
摘要
By accounting for the external and internal force acting on the suspended magnetic nanoparticles and motion characteristics of the suspended magnetic nanoparticles in the magnetic fluids,the three-dimensional microstructure of magnetic fluids is investigated by means of the molecular dynamics simulation method. The distribu-tion of suspended magnetic nanoparticles and microstructure of the magnetic fluid are simulated in both absence and presence of an external magnetic field. The ef-fects of the nanoparticles volume fraction,the dipole-dipole interaction potential and the particle-field interaction potential on the microstructures of the magnetic fluids are discussed. The main results obtained here are summarized as follows. The suspended magnetic nanoparticles tend to aggregate and make the irregular distribution structure in the absence of an external magnetic field. When the mag-netic fluid is exposed to a magnetic field,the magnetic nanoparticles suspended in the carrier fluid tend to remain chained-alignment in the direction of the external magnetic field. The tendency of chain-alignment morphology of the suspended magnetic nanoparticles is enhanced with the nanoparticles volume fraction,the dipole-dipole interaction potential and the particle-field interaction potential.
引用
收藏
页码:371 / 379
页数:9
相关论文
共 50 条
  • [21] Dissipative particle dynamics simulation for the microstructures of ferromagnetic fluids
    Li, Wuming
    Ouyang, Jie
    Zhuang, Xin
    SOFT MATERIALS, 2016, 14 (02) : 87 - 95
  • [22] Lattice Boltzmann simulation for temperature-sensitive magnetic fluids in a porous square cavity
    Jin, Licong
    Zhang, Xinrong
    Niu, Xiaodong
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (01) : 44 - 51
  • [23] Control of Microstructure and Magnetic Properties of FePt Films With TiN Intermediate Layer
    Dong, K. F.
    Li, H. H.
    Hu, J. F.
    Peng, Y. G.
    Ju, G.
    Chow, G. M.
    Chen, J. S.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (02) : 668 - 674
  • [24] Capillary ascension of magnetic fluids
    Bashtovoi, V
    Kuzhir, P
    Reks, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 252 (1-3) : 265 - 267
  • [25] Microorganisms growth with magnetic fluids
    Dunca, S
    Creanga, DE
    Ailiesei, O
    Nimitan, E
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 289 : 445 - 447
  • [26] On the theory of birefringence in magnetic fluids
    A. Yu. Zubarev
    Colloid Journal, 2012, 74 : 695 - 702
  • [27] EFFECTIVE VISCOSITY OF MAGNETIC FLUIDS
    SHEN, JP
    DOI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (01) : 111 - 117
  • [28] Simulation of martensitic microstructure
    G. J. Ackland
    Journal of Materials Science, 2005, 40 : 3205 - 3208
  • [29] Distribution of micrometer-size particles in magnetic fluids in the presence of steady uniform magnetic field
    Ido, Y.
    Yamaguchi, T.
    Kiuchi, Y.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (10) : 1283 - 1287
  • [30] On the nonlinear rheology of magnetic fluids
    A. Yu. Zubarev
    L. Yu. Iskakova
    D. N. Chirikov
    Colloid Journal, 2011, 73 : 327 - 339