The Spectrum of Linear Operators on Quotient Indecomposable Banach Spaces

被引:0
作者
苏维钢
机构
[1] SchoolofMathematicsandComputerScienceFujianNormalUniversity,Fuzhou,
关键词
Banach space; quotient indecomposable; spectrum; generator;
D O I
10.13447/j.1674-5647.2006.02.016
中图分类号
O177.2 [巴拿赫空间及其线性算子理论];
学科分类号
070104 ;
摘要
<正>This paper discusses the special properties of the spectrum of linear operators (in particular, bounded linear operators) on quotient indecomposable Banach spaces; shows that in such spaces generators of Co-groups are always bounded linear operators, and that generators of Co-semigroups satisfy the spectral mapping theorem; and gives an example to show that the generators of Co-semigroups in quotient indecomposable spaces are not necessarily bounded.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
[21]   MULTIDISKCYCLIC OPERATORS ON BANACH SPACES [J].
Bamerni, Nareen .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (04) :517-522
[22]   Acute and Stable Perturbations of the Drazin Inverse of Bounded Linear Operators in Banach Spaces [J].
Ma, Haifeng .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (14) :1748-1760
[23]   Some new perturbation theorems for generalized inverses of linear operators in Banach spaces [J].
Yang, Xiaodan ;
Wang, Yuwen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) :1939-1949
[24]   A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES [J].
Blali, Aziz ;
EL Amrani, Abdelkhalek ;
Ettayb, Jawad .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2022, 28 (02) :105-109
[25]   STRONG CONVERGENCE THEOREMS FOR COMMUTATIVE FAMILIES OF LINEAR CONTRACTIVE OPERATORS IN BANACH SPACES [J].
Takahashi, Wataru ;
Wong, Ngai-Ching ;
Yao, Jen-Chih .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (02) :193-209
[26]   Extremal problems for operators in banach spaces arising in the study of linear operator pencils [J].
Khatskevich, VA ;
Ostrovskii, MI ;
Shulman, VS .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (01) :109-119
[27]   THE MINIMAL PROPERTY OF THE CONDITION NUMBER OF INVERTIBLE LINEAR BOUNDED OPERATORS IN BANACH SPACES [J].
陈果良 ;
魏木生 .
Numerical Mathematics A Journal of Chinese Universities(English Series), 2002, (01) :63-69
[28]   Strong convergence theorems for commutative semigroups of continuous linear operators on Banach spaces [J].
Eshita, K ;
Takahashi, W .
TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (04) :531-550
[29]   Perturbations of Moore–Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces [J].
Hai Feng MA ;
Shuang SUN ;
Yu Wen WANG ;
Wen Jing ZHENG .
ActaMathematicaSinica(EnglishSeries), 2014, 30 (07) :1109-1124
[30]   Extremal Problems for Operators in Banach Spaces Arising in the Study of Linear Operator Pencils [J].
V. A. Khatskevich ;
M. I. Ostrovskii ;
V. S. Shulman .
Integral Equations and Operator Theory, 2005, 51 :109-119