Critical Behaviors in a Stochastic One-Dimensional Sand-Pile Model

被引:0
作者
ZHANG Duan-Ming
SUN Hong-Zhang
LI Zhi-Hua
PAN Gui-Jun
YU Bo-Ming
YIN Yan-Ping
SUN Fan Department of Physics
机构
基金
中国国家自然科学基金;
关键词
self-organized criticality; power-law; sand-pile model; finite-size scaling; universality class;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
A one-dimensional sand-pile model (Manna model), which has a stochastic redistribution process, is studiedboth in discrete and continuous manners. The system evolves into a critical state after a transient period. A detailedanalysis of the probability distribution of the avalanche size and duration is numerically investigated. Interestingly,contrary to the deterministic one-dimensional sand-pile model, where multifractal analysis works well, the analysis basedon simple finite-size scaling is suited to fitting the data on the distribution of the avalanche size and duration. Theexponents characterizing these probability distributions are measured. Scaling relations of these scaling exponents andtheir universality class are discussed.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 22 条
  • [1] V.Frette,et al. Nature . 1996
  • [2] L. P. Kadanoff,et al. Physical Review A Atomic Molecular and Optical Physics . 1989
  • [3] M. Rossi,et al. Physical Review Letters . 2000
  • [4] A.Chessa,et al. Phys.Rev E . 1999
  • [5] D. Hughes,and M. Paczuski. Phys Revs. Lett . 2002
  • [6] R. Karmakar,and S. S. Manna. Phys Rev. E . 2004
  • [7] R. Pastor-Satorras,and A. Vespignani. Phys Rev. E . 2000
  • [8] E. Milshtein,et al. Physical Review E Statistical Nonlinear and Soft Matter Physics . 1998
  • [9] M.Paczuski,and S.Boettcher. Physical Review Letters . 1996
  • [10] M. De Menech,et al. Physical Review E Statistical Nonlinear and Soft Matter Physics . 1998