Vegetation Cover Variation in the Qilian Mountains and its Response to Climate Change in 2000-2011

被引:0
作者
DENG Shao-fu [1 ,2 ]
YANG Tai-bao [1 ,2 ]
ZENG Biao [2 ]
ZHU Xi-fen [3 ]
XU Hao-jie [2 ]
机构
[1] Key Laboratory of Western China’s Environmental System (Ministry of Education), Research School of Arid Environment & Climate Change, Lanzhou University
[2] Institute of Glaciology and Ecogeography, College of Earth and Environmental Sciences, Lanzhou University
[3] Geological Team No. 135, Sichuan Bureau of Coal Geology
基金
中国国家自然科学基金;
关键词
NDVI; Temperature; Precipitation; Topography;
D O I
暂无
中图分类号
P461.7 [];
学科分类号
0706 ; 070601 ;
摘要
An understanding of variations in vegetation cover in response to climate change is critical for predicting and managing future terrestrial ecosystem dynamics. Because scientists anticipate that mountain ecosystems will be more sensitive to future climate change compared to others, our objectives were to investigate the impacts of climate change on variation in vegetation cover in the Qilian Mountains(QLM), China, between 2000 and 2011. To accomplish this, we used linear regression techniques on 250-m MODIS Normalized Difference Vegetation Index(NDVI) datasets and meteorological records to determine spatiotemporal variability in vegetation cover and climatic factors(i.e. temperature and precipitation). Our results showed that temperatures and precipitation have increased in this region during our study period. In addition, we found that growing season mean NDVI was mainly distributed in the vertical zone from 2,700 m to 3,600 m in elevation. In the study region, we observed significant positive and negative trends in vegetation cover in 26.71% and2.27% of the vegetated areas. Correlation analyses indicated that rising precipitation from May to August was responsible for increased vegetation cover in areas with positive trends in growing season mean NDVI. However, there was no similar significant correlation between growing season mean NDVI and precipitation in regions where vegetation cover declined throughout our study period. Using spatialstatistics, we found that vegetation cover frequently declined in areas within the 2,500–3,100 m vertical zone, where it has steep slope, and is on the sunny side of mountains. Here, the positive influences of increasing precipitation could not offset the drier conditions that occurred through warming trends. In contrast, in higher elevation zones(3,900–4,500 m)on the shaded side of the mountains, rising temperatures and increasing precipitation improved conditions for vegetation growth. Increased precipitation also facilitated vegetation growth in areas experiencing warming trends at lower elevations(2,000–2,400 m) and on lower slopes where water was more easily conserved. We suggest that spatial differences in variation in vegetation as the result of climate change depend on local moisture and thermal conditions, which are mainly controlled by topography(e.g. elevation, aspect, and slope), and other factors, such as local hydrology.
引用
收藏
页码:1050 / 1062
页数:13
相关论文
共 50 条
  • [31] Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin
    Wang, Wenzhi
    Liu, Xiaohong
    Shao, Xuemei
    Qin, Dahe
    Xu, Guobao
    Wang, Bo
    Zeng, Xiaomin
    Wu, Guoju
    Zhang, Xuanwen
    CLIMATIC CHANGE, 2015, 133 (02) : 237 - 251
  • [32] Vegetation Change and Its Response to Climate Change between 2000 and 2016 in Marshes of the Songnen Plain, Northeast China
    Wang, Yanji
    Shen, Xiangjin
    Jiang, Ming
    Lu, Xianguo
    SUSTAINABILITY, 2020, 12 (09)
  • [33] Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains
    Li, Cheng
    Zou, Yuyang
    He, Jianfeng
    Zhang, Wen
    Gao, Lulu
    Zhuang, Dafang
    REMOTE SENSING, 2022, 14 (05)
  • [34] Influence of Vegetation Coverage and Climate Environment on Soil Organic Carbon in the Qilian Mountains
    Wan, Qiaozhuo
    Zhu, Guofeng
    Guo, Huiwen
    Zhang, Yu
    Pan, Hanxiong
    Yong, Leilei
    Ma, Huiying
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [35] Effects of regional vegetation cover degradation and climate change on dusty weather types
    Nouri, Hamid
    Faramarzi, Mohammad
    Sadeghi, Seyyed Hadi
    Nasseri, Samaneh
    ENVIRONMENTAL EARTH SCIENCES, 2019, 78 (24)
  • [36] Spatiotemporal variation in vegetation phenology and its response to climate change in marshes of Sanjiang Plain, China
    Liu, Yiwen
    Shen, Xiangjin
    Zhang, Jiaqi
    Wang, Yanji
    Wu, Liyuan
    Ma, Rong
    Lu, Xianguo
    Jiang, Ming
    ECOLOGY AND EVOLUTION, 2023, 13 (01):
  • [37] Dynamic change of vegetation and its response to climate and topographic factors in the Xijiang River basin, China
    Jia, Lu
    Li, Zhan-bin
    Xu, Guo-ce
    Ren, Zong-ping
    Li, Peng
    Cheng, Yu-ting
    Zhang, Yi-xin
    Wang, Bin
    Zhang, Jia-xin
    Yu, Shu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (11) : 11637 - 11648
  • [38] Impact of climate change on alpine plant community in Qilian Mountains of China
    Du, Jun
    He, Zhibin
    Chen, Longfei
    Lin, Pengfei
    Zhu, Xi
    Tian, Quanyan
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2021, 65 (11) : 1849 - 1858
  • [39] Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China
    Du, Qinqin
    Sun, Yunfan
    Guan, Qingyu
    Pan, Ninghui
    Wang, Qingzheng
    Ma, Yunrui
    Li, Huichun
    Liang, Lushuang
    JOURNAL OF HYDROLOGY, 2022, 612
  • [40] Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China
    Du, Qinqin
    Sun, Yunfan
    Guan, Qingyu
    Pan, Ninghui
    Wang, Qingzheng
    Ma, Yunrui
    Li, Huichun
    Liang, Lushuang
    Journal of Hydrology, 2022, 612