GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS

被引:0
|
作者
罗兰 [1 ,2 ]
张新平 [3 ]
机构
[1] School of Mathematics and Information Science, Guangzhou University
[2] Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes, Guangzhou University
[3] Department of Mathematics and Sciences, Luoyang Institute of Science and Technology
基金
中国国家自然科学基金;
关键词
quantum Fokker-Planck equations; energy method; convergence rates;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O413.1 [量子力学(波动力学、矩阵力学)];
学科分类号
070104 ; 070205 ; 0809 ;
摘要
We consider a class of nonlinear kinetic Fokker-Planck equations modeling quantum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We establish the existence and convergence rate to the steady state of global classical solution to such kind of equations around the steady state.
引用
收藏
页码:140 / 156
页数:17
相关论文
共 50 条
  • [1] GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS
    罗兰
    张新平
    Acta Mathematica Scientia(English Series), 2015, 35 (01) : 140 - 156
  • [2] GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS
    Luo, Lan
    Zhang, Xinping
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (01) : 140 - 156
  • [3] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [4] EXISTENCE OF GLOBAL WEAK SOLUTIONS TO FOKKER-PLANCK AND NAVIER-STOKES-FOKKER-PLANCK EQUATIONS IN KINETIC MODELS OF DILUTE POLYMERS
    Barrett, John W.
    Suli, Endre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03): : 371 - 408
  • [5] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [6] The existence of mild and classical solutions for time fractional Fokker-Planck equations
    Peng, Li
    Zhou, Yong
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 377 - 410
  • [7] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [8] Sobolev embeddings for kinetic Fokker-Planck equations
    Pascucci, Andrea
    Pesce, Antonello
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (07)
  • [9] On global solutions to some non-Markovian quantum kinetic models of Fokker-Planck type
    Alejo, Miguel A.
    Lopez, Jose Luis
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [10] Exact solutions of Fokker-Planck equations associated to quantum wave functions
    Petroni, NC
    De Martino, S
    De Siena, S
    PHYSICS LETTERS A, 1998, 245 (1-2) : 1 - 10