Gene Expression Data Classification Using Consensus Independent Component Analysis

被引:7
作者
ChunHou Zheng DeShuang Huang XiangZhen Kong and XingMing Zhao College of Information and Communication Technology Qufu Normal University Rizhao China Intelligent Computing Lab Institute of Intelligent Machines Chinese Academy of Sciences Hefei China [1 ,2 ,2 ,1 ,2 ,1 ,276826 ,2 ,230031 ]
机构
关键词
independent component analysis; feature selection; support vector machine; gene expression data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant engenassays extracted by ICA are selected by the sequential floating forward selection technique. Finally, support vector machine is used to classify the modeling data. To show the validity of the proposed method, we applied it to classify three DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 5 条
[1]   Feature selection in the independent component subspace for face recognition [J].
Ekenel, HK ;
Sankur, B .
PATTERN RECOGNITION LETTERS, 2004, 25 (12) :1377-1388
[2]   Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions [J].
Selaru, FM ;
Xu, Y ;
Yin, J ;
Zou, T ;
Liu, TC ;
Mori, Y ;
Abraham, JM ;
Sato, F ;
Wang, S ;
Twigg, C ;
Olaru, A ;
Shustova, V ;
Leytin, A ;
Hytiroglou, P ;
Shibata, D ;
Harpaz, N ;
Meltzer, SJ .
GASTROENTEROLOGY, 2002, 122 (03) :606-613
[3]  
Support vector machine classification and validation of cancer tissue samples using microarray expression data[J] . Terrence S. Furey,Nello Cristianini,Nigel Duffy,David W. Bednarski,Mich&egrave,l Schummer.Bioinformatics . 2000
[4]   Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources [J].
Lee, TW ;
Girolami, M ;
Sejnowski, TJ .
NEURAL COMPUTATION, 1999, 11 (02) :417-441
[5]  
Blind source separation and the analysis of microarray data .2 Chiappetta P,Roubaud MC,Torresani B. J Comput Biol . 2004