Hausdorff dimension of a chaotic set of shift of a symbolic space

被引:0
|
作者
熊金城
机构
[1] Hefei 230026
[2] University of Scienoe and Technology of China
基金
中国国家自然科学基金;
关键词
symbolic space; chaotic set; Hausdorff dimeosian;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
For the shift a of the symbolic space ∑N there exists a subset (called a chaotic set for σ) C of ∑N whose Hausdorff dimension is 1 everywhere (i.e. the Hausdorff dimension of the intersection of C and every non-empty open set of the symbolic space ∑N is 1), satisfying the condition for any non-empty subset A of the set C, and for any continuous map F: A→∑N there exists a strictly increasing sequence {rn} of positive integers such that the sequence {σ (x)} converges to F(x) for any x∈A. On the other hand, it is shown that in ∑N every chaotic set for σ has 1-dimensional Hausdorff measure 0.
引用
收藏
页码:696 / 708
页数:13
相关论文
共 50 条
  • [31] Dichotomy for the Hausdorff dimension of the set of nonergodic directions
    Cheung, Yitwah
    Hubert, Pascal
    Masur, Howard
    INVENTIONES MATHEMATICAE, 2011, 183 (02) : 337 - 383
  • [32] On the exact Hausdorff dimension of the set of Liouville numbers
    Olsen, L
    MANUSCRIPTA MATHEMATICA, 2005, 116 (02) : 157 - 172
  • [33] Dichotomy for the Hausdorff dimension of the set of nonergodic directions
    Yitwah Cheung
    Pascal Hubert
    Howard Masur
    Inventiones mathematicae, 2011, 183 : 337 - 383
  • [34] EXCEPTIONAL SET ESTIMATES FOR THE HAUSDORFF DIMENSION OF INTERSECTIONS
    Mattila, Pertti
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 611 - 620
  • [35] HAUSDORFF DIMENSION OF THE SET APPROXIMATED BY IRRATIONAL ROTATIONS
    Kim, Dong Han
    Rams, Michal
    Wang, Baowei
    MATHEMATIKA, 2018, 64 (01) : 267 - 283
  • [36] On Dichotomy for Hausdorff dimension of the set of nonergodic directions
    Yan Huang
    Geometriae Dedicata, 2021, 213 : 547 - 576
  • [37] ON THE HAUSDORFF DIMENSION OF A SET OF COMPLEX CONTINUED FRACTIONS
    GARDNER, RJ
    MAULDIN, RD
    ILLINOIS JOURNAL OF MATHEMATICS, 1983, 27 (02) : 334 - 345
  • [38] On the exact Hausdorff dimension of the set of Liouville numbers
    L. Olsen
    manuscripta mathematica, 2005, 116 : 157 - 172
  • [39] Hausdorff dimension of chaotic attractors in a class of nonsmooth systems
    Li, Denghui
    Miao, Pengcheng
    Xie, Jianhua
    Grebogi, Celso
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [40] The Hausdorff measure of chaotic sets of adjoint shift maps
    Wang Huoyun
    Song Wangan
    CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 859 - 863