Empirical mode decomposition using variable filtering with time scale calibrating

被引:0
|
作者
Yuan Ye~(1
2.School of Industrial Design and Information Engineering
3.The Science and Technology Committee of China Aerospace Science and Industry Corporation
机构
基金
中国国家自然科学基金;
关键词
empirical mode decomposition; variable FIR filtering; time scale calibrating;
D O I
暂无
中图分类号
TN911.7 [信号处理];
学科分类号
0711 ; 080401 ; 080402 ;
摘要
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed.Unlike the original empirical mode decomposition (EMD),which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process,this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes.The IMFs ate results of a multiple variable frequency response FIR filtering when signals pass through the filters.Numerical ex- amples validate that in contrast with the original EMD,the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 50 条
  • [41] Epileptic Seizure Detection Using Empirical Mode Decomposition
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 238 - 242
  • [42] Empirical Mode Decomposition: Real-Time Implementation and Applications
    Amir Eftekhar
    Christofer Toumazou
    Emmanuel M. Drakakis
    Journal of Signal Processing Systems, 2013, 73 : 43 - 58
  • [43] Compression of AIRS data using empirical mode decomposition
    Gladkova, I
    Roytman, L
    Goldberg, M
    Weber, J
    ATMOSPHERIC AND ENVIRONMENTAL REMOTE SENSING DATA PROCESSING AND UTILIZATION: AN END TO END SYSTEM PERSPECTIVE, 2004, 5548 : 88 - 98
  • [44] Carbon Price Analysis Using Empirical Mode Decomposition
    Bangzhu Zhu
    Ping Wang
    Julien Chevallier
    Yiming Wei
    Computational Economics, 2015, 45 : 195 - 206
  • [45] Aircraft Touchdown Detection Using Empirical Mode Decomposition
    Ozkaya, Hasan
    Sakarya, Ufuk
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [46] Hierarchical Order Statistics Filtering for Fast Bi-Dimensional Empirical Mode Decomposition
    Semiz, Serkan
    Celebi, Anil
    Urhan, Oguzhan
    ETRI JOURNAL, 2016, 38 (04) : 695 - 702
  • [47] Optimal Signal Reconstruction Using the Empirical Mode Decomposition
    Binwei Weng
    Kenneth E. Barner
    EURASIP Journal on Advances in Signal Processing, 2008
  • [48] Segment empirical mode decomposition filtering method on distance correction signal for aerosol lidar
    Hu, Dexin
    Bi, Xianbin
    Li, Zunwei
    Jiang, Chunhua
    OPTICAL ENGINEERING, 2023, 62 (06)
  • [49] Trend Extraction using Empirical Mode Decomposition and statistical Empirical Mode Decomposition Case Study: Kuala Lumpur stock market
    Jaber, Abobaker M.
    Ismail, Mohd Tahir
    INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 776 - 779
  • [50] Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition
    Huang, Yongxiang
    Schmitt, Francois G.
    JOURNAL OF MARINE SYSTEMS, 2014, 130 : 90 - 100