Empirical mode decomposition using variable filtering with time scale calibrating

被引:0
|
作者
Yuan Ye~(1
2.School of Industrial Design and Information Engineering
3.The Science and Technology Committee of China Aerospace Science and Industry Corporation
机构
基金
中国国家自然科学基金;
关键词
empirical mode decomposition; variable FIR filtering; time scale calibrating;
D O I
暂无
中图分类号
TN911.7 [信号处理];
学科分类号
0711 ; 080401 ; 080402 ;
摘要
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed.Unlike the original empirical mode decomposition (EMD),which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process,this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes.The IMFs ate results of a multiple variable frequency response FIR filtering when signals pass through the filters.Numerical ex- amples validate that in contrast with the original EMD,the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 50 条
  • [31] Empirical Mode Decomposition: Real-Time Implementation and Applications
    Eftekhar, Amir
    Toumazou, Christofer
    Drakakis, Emmanuel M.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2013, 73 (01): : 43 - 58
  • [32] Damage identification in beams using empirical mode decomposition
    Rezaei, Davood
    Taheri, Farid
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2011, 10 (03): : 261 - 274
  • [33] Hyperspectral image fusion using empirical mode decomposition
    Xu, Yiping
    Hu, Kaoning
    Han, Jianxin
    MIPPR 2007: MEDICAL IMAGING, PARALLEL PROCESSING OF IMAGES, AND OPTIMIZATION TECHNIQUES, 2007, 6789
  • [34] Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series
    Kisi, Ozgur
    Latifoglu, Levent
    Latifoglu, Fatma
    WATER RESOURCES MANAGEMENT, 2014, 28 (12) : 4045 - 4057
  • [35] A Complex Empirical Mode Decomposition for Multivariant Traffic Time Series
    Shen, Guochen
    Zhang, Lei
    ELECTRONICS, 2023, 12 (11)
  • [36] SLEEP SPINDLES DETECTION USING EMPIRICAL MODE DECOMPOSITION
    Saifutdinova, E.
    Gerla, V.
    Lhotska, L.
    Koprivova, J.
    Sos, P.
    2015 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA UNDERSTANDING (IWCIM), 2015,
  • [37] Carbon Price Analysis Using Empirical Mode Decomposition
    Zhu, Bangzhu
    Wang, Ping
    Chevallier, Julien
    Wei, Yiming
    COMPUTATIONAL ECONOMICS, 2015, 45 (02) : 195 - 206
  • [38] Transient signal detection using the empirical mode decomposition
    Larsen, ML
    Ridgway, J
    Waldman, CH
    Gabbay, M
    Buntzen, RR
    Battista, B
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIV, 2004, 5559 : 156 - 171
  • [39] Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series
    Ozgur Kisi
    Levent Latifoğlu
    Fatma Latifoğlu
    Water Resources Management, 2014, 28 : 4045 - 4057
  • [40] Facial emotion recognition using empirical mode decomposition
    Ali, Hasimah
    Hariharan, Muthusamy
    Yaacob, Sazali
    Adom, Abdul Hamid
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1261 - 1277