Empirical mode decomposition using variable filtering with time scale calibrating

被引:0
|
作者
Yuan Ye~(1
2.School of Industrial Design and Information Engineering
3.The Science and Technology Committee of China Aerospace Science and Industry Corporation
机构
基金
中国国家自然科学基金;
关键词
empirical mode decomposition; variable FIR filtering; time scale calibrating;
D O I
暂无
中图分类号
TN911.7 [信号处理];
学科分类号
0711 ; 080401 ; 080402 ;
摘要
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed.Unlike the original empirical mode decomposition (EMD),which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process,this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes.The IMFs ate results of a multiple variable frequency response FIR filtering when signals pass through the filters.Numerical ex- amples validate that in contrast with the original EMD,the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 50 条
  • [21] Overlay Communications Using Empirical Mode Decomposition
    Roy, Arnab
    Doherty, John F.
    IEEE SYSTEMS JOURNAL, 2011, 5 (01): : 121 - 128
  • [22] Variable sampling of the empirical mode decomposition of two-dimensional signals
    Linderhed, A
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2005, 3 (03) : 435 - 452
  • [23] Prony analysis of low frequency oscillations based on empirical mode decomposition filtering
    Hou Wang-Bin
    Liu Tian-Qi
    Li Xing-Yuan
    ACTA PHYSICA SINICA, 2010, 59 (05) : 3531 - 3537
  • [24] A hybrid filtering method based on a novel empirical mode decomposition for friction signals
    Li, Chengwei
    Zhan, Liwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (12)
  • [25] Extracting planetary waves from geomagnetic time series using Empirical Mode Decomposition
    Fruehauff, Dennis
    Glassmeier, Karl-Heinz
    Lockwood, Michael
    Heyner, Daniel
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2015, 129 : 6 - 12
  • [26] Scaling analysis of time series using empirical mode decomposition and Hilbert spectral analysis
    Huang, Yongxiang
    Schmitt, Francois G.
    Lu, Zhiming
    Liu, Yulu
    TRAITEMENT DU SIGNAL, 2008, 25 (06) : 481 - 492
  • [27] On the difference between empirical mode decomposition and wavelet decomposition in the nonlinear time series
    Gong, ZQ
    Zou, MW
    Gao, XQ
    Dong, WJ
    ACTA PHYSICA SINICA, 2005, 54 (08) : 3947 - 3957
  • [28] Extraction of high-frequency SSVEP for BCI control using iterative filtering based empirical mode decomposition
    Hsu, Chuan-Chih
    Yeh, Chia-Lung
    Lee, Wai-Keung
    Hsu, Hao-Teng
    Shyu, Kuo-Kai
    Li, Lieber Po-Hung
    Wu, Tien-Yu
    Lee, Po-Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 61
  • [29] Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression
    Nava, Noemi
    Di Matteo, Tiziana
    Aste, Tomaso
    RISKS, 2018, 6 (01)
  • [30] Jump point detection using empirical mode decomposition
    Lam, Benson S. Y.
    Yu, Carisa K. W.
    Choy, Siu-Kai
    Leung, Jacky K. T.
    LAND USE POLICY, 2016, 58 : 1 - 8