APPLICATION OF SUBPLEX OPTIMIZATION TO SOLUTE-TRANSPORT PROBLEM

被引:0
作者
Xiaoyong ZHAN1 and Bernard A.Schrefler2 (1.Kansas Geological Survey
2.Civil Engineering Department
机构
关键词
Multiphase; solute transport; interphase exchange; porous media; inverse problem; optimization;
D O I
暂无
中图分类号
P641.2 [地下水动力学];
学科分类号
0818 ; 081803 ;
摘要
Determining parameters,such as interphase exchange rate and dispersivity,in multiphase solute transport problem has always been an interesting issue.These parameters are usually not available because they are too difficult or too expensive to measure although they are necessary as input data or parameters for numerical modeling.To overcome this problem,inverse techniques have been developed.Recently,the subplex optimization approach,which considers reflection,expansion,contraction,and shrinkage as basic components in seeking the minimization point and which uses the subspace concept in search space,has been incorporated into our coupled multiphase fluid- flow and solute- transport simulator.In the application of the finite element model to multiphase infiltration and solute transport problem,physical variables,which are easy to observe(such as solute concentrations),are used as constraints in minimizing the differences between computed output and measured data.Therefore,modeling results provide optimized parameter estimates in addition to comparison with field data.Our numerical- simulation example on interphase- exchange coefficient as well as water and gas dispersivities shows optimized parameters approaching the same values specified in the forward simulation used to generate the synthetic constrained data.This provides an implication of possible application to the fields of earch sciences,including geotectonics and metallogeny.
引用
收藏
页码:42 / 48
页数:7
相关论文
empty
未找到相关数据