Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management

被引:3
作者
Qiannan Zhang [1 ]
Yutao Huo [1 ]
Zhonghao Rao [1 ,2 ]
机构
[1] School of Electric Power Engineering, China University of Mining and Technology
[2] Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University
基金
中国国家自然科学基金;
关键词
Phase change material; Battery thermal; management; Solid–liquid phase change; Heat flux; Thermal conductivity;
D O I
暂无
中图分类号
TB34 [功能材料];
学科分类号
080501 ;
摘要
With the large latent heat and low cost, the paraffin has been widely used in battery thermal management(BTM) system to improve the efficiency and cycling life of power battery. The numerical model of paraffin melting in a cavity has been established, and the effects on the solid–liquid phase change process have been investigated for the purpose of enhancing the heat transfer performance of paraffin-based BTM system. The results showed that the location of the heating wall had great effects on the melting process. The paraffin in the cavity melted most quickly when the heating wall located at the bottom. Furthermore, the effects of thermal conductivity and the velocity of the slip wall have been considered. The gradient of liquid fraction increased with the increase in thermal conductivity, and the melting process could be accelerated or delayed by the slip wall with different velocity.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 50 条
  • [41] Performance investigation of a passive battery thermal management system applied with phase change material
    Wang, Yanan
    Wang, Zhengkun
    Min, Haitao
    Li, Hua
    Li, Qingfeng
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [42] Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management
    Jiang, Guiwen
    Huang, Juhua
    Fu, Yanshu
    Cao, Ming
    Liu, Mingchun
    APPLIED THERMAL ENGINEERING, 2016, 108 : 1119 - 1125
  • [43] Review of phase change material application in thermal management of electric vehicle battery pack
    Rani, Moda Geetha
    Rangasamy, Rajaraman
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2024, 238 (01) : 197 - 214
  • [44] Thermal management optimization of a prismatic battery with shape-stabilized phase change material
    Wu, Weixiong
    Wu, Wei
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 121 : 967 - 977
  • [45] Optimization of the detailed factors in a phase-change-material module for battery thermal management
    Weng, Jingwen
    Yang, Xiaoqing
    Zhang, Guoqing
    Ouyang, Dongxu
    Chen, Mingyi
    Wang, Jian
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 : 126 - 134
  • [46] Optimization of the internal fin in a phase-change-material module for battery thermal management
    Weng, Jingwen
    Ouyang, Dongxu
    Yang, Xiaoqing
    Chen, Mingyi
    Zhang, Guoqing
    Wang, Jian
    APPLIED THERMAL ENGINEERING, 2020, 167
  • [47] Composite phase change material with room-temperature-flexibility for battery thermal management
    Wu, Weifeng
    Ye, Guohua
    Zhang, Guoqing
    Yang, Xiaoqing
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [48] Battery thermal management model and structure optimization of porous composite phase change material
    Li, Yang
    Tao, Yubing
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (2-3): : 213 - 221
  • [49] Investigation of the thermal management potential of phase change material for lithium-ion battery
    Wang, Haocheng
    Guo, Yanhong
    Ren, Yong
    Yeboah, Siegfried
    Wang, Jing
    Long, Fei
    Zhang, Zhiyu
    Jiang, Rui
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [50] Effect of nano-enhanced phase change material on the thermal management of a 18650 NMC battery pack
    Talele, Virendra
    Zhao, Peng
    JOURNAL OF ENERGY STORAGE, 2023, 64