Asymptotics of the quantization errors for in-homogeneous self-similar measures supported on self-similar sets

被引:0
作者
ZHU SanGuo
机构
[1] SchoolofMathematicsandPhysics,JiangsuUniversityofTechnology
关键词
condensation system; in-homogeneous self-similar measures; quantization coefficient; quantization dimension;
D O I
暂无
中图分类号
O189 [拓扑(形势几何学)];
学科分类号
070104 ;
摘要
We study the quantization for in-homogeneous self-similar measures μ supported on self-similar sets.Assuming the open set condition for the corresponding iterated function system, we prove the existence of the quantization dimension for μ of order r ∈(0, ∞) and determine its exact value ξr. Furthermore, we show that,the ξr-dimensional lower quantization coefficient for μ is always positive and the upper one can be infinite. A sufficient condition is given to ensure the finiteness of the upper quantization coefficient.
引用
收藏
页码:337 / 350
页数:14
相关论文
共 8 条
[1]  
Packing dimension of generalized Moran sets[J]. 华苏 ,李文侠.Progress in Natural Science. 1996(02)
[2]   On the upper and lower quantization coefficient for probability measures on multiscale Moran sets [J].
Zhu, Sanguo .
CHAOS SOLITONS & FRACTALS, 2012, 45 (11) :1437-1443
[3]   Optimal quantization for dyadic homogeneous Cantor distributions [J].
Kreitmeier, Wolfgang .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (09) :1307-1327
[4]  
A variational principle for fractal dimensions[J] . Andrzej Lasota.Nonlinear Analysis . 2005 (3)
[5]  
Optimum quantization and its applications[J] . Peter M. Gruber.Advances in Mathematics . 2003 (2)
[6]   A space quantization method for numerical integration [J].
Pages, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (01) :1-38
[7]  
On Bandt's tangential distribution for self-similar measures[J] . Siegfried Graf.Monatshefte für Mathematik . 1995 (3)
[8]   SEPARATION PROPERTIES FOR SELF-SIMILAR SETS [J].
SCHIEF, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :111-115