A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation EBCOT . Simulation results show that EDD is more suitable for non-stationary image data compression.